BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

197 related articles for article (PubMed ID: 26405897)

  • 1. Fully automatic scheme for measuring liver volume in 3D MR images.
    Le TN; Bao PT; Huynh HT
    Biomed Mater Eng; 2015; 26 Suppl 1():S1361-9. PubMed ID: 26405897
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Computerized liver volumetry on MRI by using 3D geodesic active contour segmentation.
    Huynh HT; Karademir I; Oto A; Suzuki K
    AJR Am J Roentgenol; 2014 Jan; 202(1):152-9. PubMed ID: 24370139
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Fully automated MR liver volumetry using watershed segmentation coupled with active contouring.
    Huynh HT; Le-Trong N; Bao PT; Oto A; Suzuki K
    Int J Comput Assist Radiol Surg; 2017 Feb; 12(2):235-243. PubMed ID: 27873147
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Semiautomated spleen volumetry with diffusion-weighted MR imaging.
    Lee J; Kim KW; Lee H; Lee SJ; Choi S; Jeong WK; Kye H; Song GW; Hwang S; Lee SG
    Magn Reson Med; 2012 Jul; 68(1):305-10. PubMed ID: 22161960
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Liver Tumor Segmentation from MR Images Using 3D Fast Marching Algorithm and Single Hidden Layer Feedforward Neural Network.
    Le TN; Bao PT; Huynh HT
    Biomed Res Int; 2016; 2016():3219068. PubMed ID: 27597960
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Prior shape level set segmentation on multistep generated probability maps of MR datasets for fully automatic kidney parenchyma volumetry.
    Gloger O; Tönies KD; Liebscher V; Kugelmann B; Laqua R; Völzke H
    IEEE Trans Med Imaging; 2012 Feb; 31(2):312-25. PubMed ID: 21937343
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Adaptive model initialization and deformation for automatic segmentation of T1-weighted brain MRI data.
    Wu Z; Paulsen KD; Sullivan JM
    IEEE Trans Biomed Eng; 2005 Jun; 52(6):1128-31. PubMed ID: 15977742
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Computer-aided measurement of liver volumes in CT by means of geodesic active contour segmentation coupled with level-set algorithms.
    Suzuki K; Kohlbrenner R; Epstein ML; Obajuluwa AM; Xu J; Hori M
    Med Phys; 2010 May; 37(5):2159-66. PubMed ID: 20527550
    [TBL] [Abstract][Full Text] [Related]  

  • 9. STACS: new active contour scheme for cardiac MR image segmentation.
    Pluempitiwiriyawej C; Moura JM; Fellow ; Wu YJ; Ho C
    IEEE Trans Med Imaging; 2005 May; 24(5):593-603. PubMed ID: 15889547
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A fast and accurate automatic lung segmentation and volumetry method for MR data used in epidemiological studies.
    Ivanovska T; Hegenscheid K; Laqua R; Kühn JP; Gläser S; Ewert R; Hosten N; Puls R; Völzke H
    Comput Med Imaging Graph; 2012 Jun; 36(4):281-93. PubMed ID: 22079337
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Quantitative evaluation of an automatic segmentation method for 3D reconstruction of intervertebral scoliotic disks from MR images.
    Claudia C; Farida C; Guy G; Marie-Claude M; Carl-Eric A
    BMC Med Imaging; 2012 Aug; 12():26. PubMed ID: 22856667
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Focused shape models for hip joint segmentation in 3D magnetic resonance images.
    Chandra SS; Xia Y; Engstrom C; Crozier S; Schwarz R; Fripp J
    Med Image Anal; 2014 Apr; 18(3):567-78. PubMed ID: 24614321
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Automatic identification of the reference system based on the fourth ventricular landmarks in T1-weighted MR images.
    Fu Y; Gao W; Chen X; Zhu M; Shen W; Wang S
    Acad Radiol; 2010 Jan; 17(1):67-74. PubMed ID: 19734061
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Computerized segmentation of liver in hepatic CT and MRI by means of level-set geodesic active contouring.
    Suzuki K; Huynh HT; Liu Y; Calabrese D; Zhou K; Oto A; Hori M
    Annu Int Conf IEEE Eng Med Biol Soc; 2013; 2013():2984-7. PubMed ID: 24110354
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Use of 3T MRI and an unspoiled 3D fast gradient echo sequence for porcine knee cartilage volumetry: preliminary findings.
    Cromer MS; Foster SL; Bourne RM; Fransen M; Fulton R; Wang SC
    J Magn Reson Imaging; 2013 Jul; 38(1):245-50. PubMed ID: 23124834
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Automatic segmentation of left and right cerebral hemispheres from MRI brain volumes using the graph cuts algorithm.
    Liang L; Rehm K; Woods RP; Rottenberg DA
    Neuroimage; 2007 Feb; 34(3):1160-70. PubMed ID: 17150376
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Automatic cerebral and cerebellar hemisphere segmentation in 3D MRI: adaptive disconnection algorithm.
    Zhao L; Ruotsalainen U; Hirvonen J; Hietala J; Tohka J
    Med Image Anal; 2010 Jun; 14(3):360-72. PubMed ID: 20303318
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Tracking fuzzy borders using geodesic curves with application to liver segmentation on planning CT.
    Yuan Y; Chao M; Sheu RD; Rosenzweig K; Lo YC
    Med Phys; 2015 Jul; 42(7):4015-26. PubMed ID: 26133602
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Automated analysis of hip joint cartilage combining MR T2 and three-dimensional fast-spin-echo images.
    Chandra SS; Surowiec R; Ho C; Xia Y; Engstrom C; Crozier S; Fripp J
    Magn Reson Med; 2016 Jan; 75(1):403-13. PubMed ID: 25644241
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Automatic segmentation and plaque characterization in atherosclerotic carotid artery MR images.
    Adame IM; van der Geest RJ; Wasserman BA; Mohamed MA; Reiber JH; Lelieveldt BP
    MAGMA; 2004 Apr; 16(5):227-34. PubMed ID: 15029508
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.