BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

121 related articles for article (PubMed ID: 26405960)

  • 21. Support Vector Machine-based classification of protein folds using the structural properties of amino acid residues and amino acid residue pairs.
    Shamim MT; Anwaruddin M; Nagarajaram HA
    Bioinformatics; 2007 Dec; 23(24):3320-7. PubMed ID: 17989092
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Predicting and understanding transcription factor interactions based on sequence level determinants of combinatorial control.
    van Dijk AD; ter Braak CJ; Immink RG; Angenent GC; van Ham RC
    Bioinformatics; 2008 Jan; 24(1):26-33. PubMed ID: 18024974
    [TBL] [Abstract][Full Text] [Related]  

  • 23. PseDNA-Pro: DNA-Binding Protein Identification by Combining Chou's PseAAC and Physicochemical Distance Transformation.
    Liu B; Xu J; Fan S; Xu R; Zhou J; Wang X
    Mol Inform; 2015 Jan; 34(1):8-17. PubMed ID: 27490858
    [TBL] [Abstract][Full Text] [Related]  

  • 24. [Random forest for classification of thermophilic and psychrophilic proteins based on amino acid composition distribution].
    Zhang G; Fang B
    Sheng Wu Gong Cheng Xue Bao; 2008 Feb; 24(2):302-8. PubMed ID: 18464617
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Statistical geometry based prediction of nonsynonymous SNP functional effects using random forest and neuro-fuzzy classifiers.
    Barenboim M; Masso M; Vaisman II; Jamison DC
    Proteins; 2008 Jun; 71(4):1930-9. PubMed ID: 18186470
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Prediction of protein structural class for the twilight zone sequences.
    Kurgan L; Chen K
    Biochem Biophys Res Commun; 2007 Jun; 357(2):453-60. PubMed ID: 17433260
    [TBL] [Abstract][Full Text] [Related]  

  • 27. POODLE-L: a two-level SVM prediction system for reliably predicting long disordered regions.
    Hirose S; Shimizu K; Kanai S; Kuroda Y; Noguchi T
    Bioinformatics; 2007 Aug; 23(16):2046-53. PubMed ID: 17545177
    [TBL] [Abstract][Full Text] [Related]  

  • 28. DynaPred: a structure and sequence based method for the prediction of MHC class I binding peptide sequences and conformations.
    Antes I; Siu SW; Lengauer T
    Bioinformatics; 2006 Jul; 22(14):e16-24. PubMed ID: 16873467
    [TBL] [Abstract][Full Text] [Related]  

  • 29. QuaBingo: A Prediction System for Protein Quaternary Structure Attributes Using Block Composition.
    Tung CH; Chen CW; Guo RC; Ng HF; Chu YW
    Biomed Res Int; 2016; 2016():9480276. PubMed ID: 27610389
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Enhancing the Prediction of Transmembrane β-Barrel Segments with Chain Learning and Feature Sparse Representation.
    Yin X; Xu YY; Shen HB
    IEEE/ACM Trans Comput Biol Bioinform; 2016; 13(6):1016-1026. PubMed ID: 26887010
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Prediction of protein folds: extraction of new features, dimensionality reduction, and fusion of heterogeneous classifiers.
    Ghanty P; Pal NR
    IEEE Trans Nanobioscience; 2009 Mar; 8(1):100-10. PubMed ID: 19278932
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Analysis and prediction of single-stranded and double-stranded DNA binding proteins based on protein sequences.
    Wang W; Sun L; Zhang S; Zhang H; Shi J; Xu T; Li K
    BMC Bioinformatics; 2017 Jun; 18(1):300. PubMed ID: 28606086
    [TBL] [Abstract][Full Text] [Related]  

  • 33. A novel and efficient technique for identification and classification of GPCRs.
    Gupta R; Mittal A; Singh K
    IEEE Trans Inf Technol Biomed; 2008 Jul; 12(4):541-8. PubMed ID: 18632334
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Identification of human drug targets using machine-learning algorithms.
    Kumari P; Nath A; Chaube R
    Comput Biol Med; 2015 Jan; 56():175-81. PubMed ID: 25437231
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Discriminating protein structure classes by incorporating Pseudo Average Chemical Shift to Chou's general PseAAC and Support Vector Machine.
    Hayat M; Iqbal N
    Comput Methods Programs Biomed; 2014 Oct; 116(3):184-92. PubMed ID: 24997484
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Sequence based prediction of DNA-binding proteins based on hybrid feature selection using random forest and Gaussian naïve Bayes.
    Lou W; Wang X; Chen F; Chen Y; Jiang B; Zhang H
    PLoS One; 2014; 9(1):e86703. PubMed ID: 24475169
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Using amphiphilic pseudo amino acid composition to predict enzyme subfamily classes.
    Chou KC
    Bioinformatics; 2005 Jan; 21(1):10-9. PubMed ID: 15308540
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Accurate prediction of nuclear receptors with conjoint triad feature.
    Wang H; Hu X
    BMC Bioinformatics; 2015 Dec; 16():402. PubMed ID: 26630876
    [TBL] [Abstract][Full Text] [Related]  

  • 39. TFmodeller: comparative modelling of protein-DNA complexes.
    Contreras-Moreira B; Branger PA; Collado-Vides J
    Bioinformatics; 2007 Jul; 23(13):1694-6. PubMed ID: 17459960
    [TBL] [Abstract][Full Text] [Related]  

  • 40. A multiple-feature framework for modelling and predicting transcription factor binding sites.
    Pudimat R; Schukat-Talamazzini EG; Backofen R
    Bioinformatics; 2005 Jul; 21(14):3082-8. PubMed ID: 15905283
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.