These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

120 related articles for article (PubMed ID: 26405960)

  • 61. Predicting protein solubility by the general form of Chou's pseudo amino acid composition: approached from chaos game representation and fractal dimension.
    Niu XH; Hu XH; Shi F; Xia JB
    Protein Pept Lett; 2012 Sep; 19(9):940-8. PubMed ID: 22486614
    [TBL] [Abstract][Full Text] [Related]  

  • 62. DNABP: Identification of DNA-Binding Proteins Based on Feature Selection Using a Random Forest and Predicting Binding Residues.
    Ma X; Guo J; Sun X
    PLoS One; 2016; 11(12):e0167345. PubMed ID: 27907159
    [TBL] [Abstract][Full Text] [Related]  

  • 63. Identification of DNA-binding and protein-binding proteins using enhanced graph wavelet features.
    Zhu Y; Zhou W; Dai DQ; Yan H
    IEEE/ACM Trans Comput Biol Bioinform; 2013; 10(4):1017-31. PubMed ID: 24334394
    [TBL] [Abstract][Full Text] [Related]  

  • 64. Analysis of conserved hydrophobic cores in proteins and supramolecular complexes.
    Karyagina A; Ershova A; Titov M; Olovnikov I; Aksianov E; Ryazanova A; Kubareva E; Spirin S; Alexeevski A
    J Bioinform Comput Biol; 2006 Apr; 4(2):357-72. PubMed ID: 16819788
    [TBL] [Abstract][Full Text] [Related]  

  • 65. Analysis and prediction of single-stranded and double-stranded DNA binding proteins based on protein sequences.
    Wang W; Sun L; Zhang S; Zhang H; Shi J; Xu T; Li K
    BMC Bioinformatics; 2017 Jun; 18(1):300. PubMed ID: 28606086
    [TBL] [Abstract][Full Text] [Related]  

  • 66. Single-stranded and double-stranded DNA-binding protein prediction using HMM profiles.
    Sharma R; Kumar S; Tsunoda T; Kumarevel T; Sharma A
    Anal Biochem; 2021 Jan; 612():113954. PubMed ID: 32946833
    [TBL] [Abstract][Full Text] [Related]  

  • 67. Analysis and identification of beta-turn types using multinomial logistic regression and artificial neural network.
    Asgary MP; Jahandideh S; Abdolmaleki P; Kazemnejad A
    Bioinformatics; 2007 Dec; 23(23):3125-30. PubMed ID: 17599929
    [TBL] [Abstract][Full Text] [Related]  

  • 68. A Novel Feature Extraction Method with Feature Selection to Identify Golgi-Resident Protein Types from Imbalanced Data.
    Yang R; Zhang C; Gao R; Zhang L
    Int J Mol Sci; 2016 Feb; 17(2):218. PubMed ID: 26861308
    [TBL] [Abstract][Full Text] [Related]  

  • 69. Analysis and classification of DNA-binding sites in single-stranded and double-stranded DNA-binding proteins using protein information.
    Wang W; Liu J; Xiong Y; Zhu L; Zhou X
    IET Syst Biol; 2014 Aug; 8(4):176-83. PubMed ID: 25075531
    [TBL] [Abstract][Full Text] [Related]  

  • 70. gDNA-Prot: Predict DNA-binding proteins by employing support vector machine and a novel numerical characterization of protein sequence.
    Zhang YP; Wuyunqiqige ; Zheng W; Liu S; Zhao C
    J Theor Biol; 2016 Oct; 406():8-16. PubMed ID: 27378005
    [TBL] [Abstract][Full Text] [Related]  

  • 71. PDNAsite: Identification of DNA-binding Site from Protein Sequence by Incorporating Spatial and Sequence Context.
    Zhou J; Xu R; He Y; Lu Q; Wang H; Kong B
    Sci Rep; 2016 Jun; 6():27653. PubMed ID: 27282833
    [TBL] [Abstract][Full Text] [Related]  

  • 72. Prediction of RNA-protein interactions using conjoint triad feature and chaos game representation.
    Wang H; Wu P
    Bioengineered; 2018; 9(1):242-251. PubMed ID: 30117758
    [TBL] [Abstract][Full Text] [Related]  

  • 73. Sequence-based Detection of DNA-binding Proteins using Multiple-view Features Allied with Feature Selection.
    Zhou L; Song X; Yu DJ; Sun J
    Mol Inform; 2020 Aug; 39(8):e2000006. PubMed ID: 32144887
    [TBL] [Abstract][Full Text] [Related]  

  • 74. OnD-CRF: predicting order and disorder in proteins using [corrected] conditional random fields.
    Wang L; Sauer UH
    Bioinformatics; 2008 Jun; 24(11):1401-2. PubMed ID: 18430742
    [TBL] [Abstract][Full Text] [Related]  

  • 75. Using random forest algorithm to predict β-hairpin motifs.
    Jia SC; Hu XZ
    Protein Pept Lett; 2011 Jun; 18(6):609-17. PubMed ID: 21309739
    [TBL] [Abstract][Full Text] [Related]  

  • 76. Evolutionary conservation of DNA-contact residues in DNA-binding domains.
    Chang YL; Tsai HK; Kao CY; Chen YC; Hu YJ; Yang JM
    BMC Bioinformatics; 2008 May; 9 Suppl 6(Suppl 6):S3. PubMed ID: 18541056
    [TBL] [Abstract][Full Text] [Related]  

  • 77. From nonspecific DNA-protein encounter complexes to the prediction of DNA-protein interactions.
    Gao M; Skolnick J
    PLoS Comput Biol; 2009 Mar; 5(3):e1000341. PubMed ID: 19343221
    [TBL] [Abstract][Full Text] [Related]  

  • 78. Identification and analysis of driver missense mutations using rotation forest with feature selection.
    Du X; Cheng J
    Biomed Res Int; 2014; 2014():905951. PubMed ID: 25250338
    [TBL] [Abstract][Full Text] [Related]  

  • 79. FermatS: A Novel Numerical Representation for Protein Sequence Comparison and DNA-binding Protein Identification.
    Zhang Y; Gao Y; Ni J; Chen P; Wang X
    Comb Chem High Throughput Screen; 2021; 24(10):1746-1753. PubMed ID: 33208064
    [TBL] [Abstract][Full Text] [Related]  

  • 80. Predicting protein-protein interactions via multivariate mutual information of protein sequences.
    Ding Y; Tang J; Guo F
    BMC Bioinformatics; 2016 Sep; 17(1):398. PubMed ID: 27677692
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.