These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

482 related articles for article (PubMed ID: 26406062)

  • 1. Experiments and kinematics analysis of a hand rehabilitation exoskeleton with circuitous joints.
    Zhang F; Fu Y; Zhang Q; Wang S
    Biomed Mater Eng; 2015; 26 Suppl 1():S665-72. PubMed ID: 26406062
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Assistive Control System for Upper Limb Rehabilitation Robot.
    Chen SH; Lien WM; Wang WW; Lee GD; Hsu LC; Lee KW; Lin SY; Lin CH; Fu LC; Lai JS; Luh JJ; Chen WS
    IEEE Trans Neural Syst Rehabil Eng; 2016 Nov; 24(11):1199-1209. PubMed ID: 26929055
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Robot-assisted humanized passive rehabilitation training based on online assessment and regulation.
    Pan L; Song A; Duan S; Xu B
    Biomed Mater Eng; 2015; 26 Suppl 1():S655-64. PubMed ID: 26406061
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Design of a 6-DOF upper limb rehabilitation exoskeleton with parallel actuated joints.
    Chen Y; Li G; Zhu Y; Zhao J; Cai H
    Biomed Mater Eng; 2014; 24(6):2527-35. PubMed ID: 25226954
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Biomechanical modeling and load-carrying simulation of lower limb exoskeleton.
    Zhu Y; Zhang G; Zhang C; Liu G; Zhao J
    Biomed Mater Eng; 2015; 26 Suppl 1():S729-38. PubMed ID: 26406068
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Developing a multi-joint upper limb exoskeleton robot for diagnosis, therapy, and outcome evaluation in neurorehabilitation.
    Ren Y; Kang SH; Park HS; Wu YN; Zhang LQ
    IEEE Trans Neural Syst Rehabil Eng; 2013 May; 21(3):490-9. PubMed ID: 23096119
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Kinematic design to improve ergonomics in human machine interaction.
    Schiele A; van der Helm FC
    IEEE Trans Neural Syst Rehabil Eng; 2006 Dec; 14(4):456-69. PubMed ID: 17190037
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Assessment of motion of a swing leg and gait rehabilitation with a gravity balancing exoskeleton.
    Agrawal SK; Banala SK; Fattah A; Sangwan V; Krishnamoorthy V; Scholz JP; Hsu WL
    IEEE Trans Neural Syst Rehabil Eng; 2007 Sep; 15(3):410-20. PubMed ID: 17894273
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A pilot study on the design and validation of a hybrid exoskeleton robotic device for hand rehabilitation.
    Haghshenas-Jaryani M; Patterson RM; Bugnariu N; Wijesundara MBJ
    J Hand Ther; 2020; 33(2):198-208. PubMed ID: 32423846
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Hiding robot inertia using resonance.
    Vallery H; Duschau-Wicke A; Riener R
    Annu Int Conf IEEE Eng Med Biol Soc; 2010; 2010():1271-4. PubMed ID: 21095916
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Developing a Wearable Ankle Rehabilitation Robotic Device for in-Bed Acute Stroke Rehabilitation.
    Ren Y; Wu YN; Yang CY; Xu T; Harvey RL; Zhang LQ
    IEEE Trans Neural Syst Rehabil Eng; 2017 Jun; 25(6):589-596. PubMed ID: 27337720
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Human-robot interaction: kinematics and muscle activity inside a powered compliant knee exoskeleton.
    Knaepen K; Beyl P; Duerinck S; Hagman F; Lefeber D; Meeusen R
    IEEE Trans Neural Syst Rehabil Eng; 2014 Nov; 22(6):1128-37. PubMed ID: 24846650
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Application of EMG signals for controlling exoskeleton robots.
    Fleischer C; Wege A; Kondak K; Hommel G
    Biomed Tech (Berl); 2006 Dec; 51(5-6):314-9. PubMed ID: 17155866
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Motorized CPM/CAM physiotherapy device with sliding-mode Fuzzy Neural Network control loop.
    Ho HJ; Chen TC
    Comput Methods Programs Biomed; 2009 Nov; 96(2):96-107. PubMed ID: 19439391
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Robot-aided neurorehabilitation: a robot for wrist rehabilitation.
    Krebs HI; Volpe BT; Williams D; Celestino J; Charles SK; Lynch D; Hogan N
    IEEE Trans Neural Syst Rehabil Eng; 2007 Sep; 15(3):327-35. PubMed ID: 17894265
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Kinematic data analysis for post-stroke patients following bilateral versus unilateral rehabilitation with an upper limb wearable robotic system.
    Kim H; Miller LM; Fedulow I; Simkins M; Abrams GM; Byl N; Rosen J
    IEEE Trans Neural Syst Rehabil Eng; 2013 Mar; 21(2):153-64. PubMed ID: 22855233
    [TBL] [Abstract][Full Text] [Related]  

  • 17. HandCARE: a cable-actuated rehabilitation system to train hand function after stroke.
    Dovat L; Lambercy O; Gassert R; Maeder T; Milner T; Leong TC; Burdet E
    IEEE Trans Neural Syst Rehabil Eng; 2008 Dec; 16(6):582-91. PubMed ID: 19144590
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Design of a quasi-passive 3 DOFs ankle-foot wearable rehabilitation orthosis.
    Zhang C; Zhu Y; Fan J; Zhao J; Yu H
    Biomed Mater Eng; 2015; 26 Suppl 1():S647-54. PubMed ID: 26406060
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Development of a powered variable-stiffness exoskeleton device for elbow rehabilitation.
    Liu Y; Guo S; Hirata H; Ishihara H; Tamiya T
    Biomed Microdevices; 2018 Aug; 20(3):64. PubMed ID: 30074095
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Quantitative evaluation of hand functions using a wearable hand exoskeleton system.
    Kim S; Lee J; Park W; Bae J
    IEEE Int Conf Rehabil Robot; 2017 Jul; 2017():1488-1493. PubMed ID: 28814030
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 25.