These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

96 related articles for article (PubMed ID: 26406099)

  • 1. A radiation emission shielding method for high intensity focus ultrasound probes.
    Wu H; Shen G; Chen Y
    Biomed Mater Eng; 2015; 26 Suppl 1():S959-66. PubMed ID: 26406099
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Feasibility of an electromagnetic compatibility method for MRgFUS using a wire mesh screen.
    Wu H; Shen G; Chen Y
    Ultrasonics; 2016 Dec; 72():15-23. PubMed ID: 27448456
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Impact of nonlinear distortion on acoustic radiation force elastography.
    Draudt AB; Cleveland RO
    Ultrasound Med Biol; 2011 Nov; 37(11):1874-83. PubMed ID: 21963033
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Lorentz-force hydrophone characterization.
    Grasland-Mongrain P; Mari JM; Gilles B; Poizat A; Chapelon JY; Lafon C
    IEEE Trans Ultrason Ferroelectr Freq Control; 2014 Feb; 61(2):353-63. PubMed ID: 24474140
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Electromagnetic hydrophone for pressure determination of shock wave pulses.
    Etienne J; Filipczyński L; Kujawska T; Zienkiewicz B
    Ultrasound Med Biol; 1997; 23(5):747-54. PubMed ID: 9253822
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Acoustic power measurement of high-intensity focused ultrasound transducer using a pressure sensor.
    Zhou Y
    Med Eng Phys; 2015 Mar; 37(3):335-40. PubMed ID: 25659300
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Magnetic resonance-guided shielding of prefocal acoustic obstacles in focused ultrasound therapy: application to intercostal ablation in liver.
    Salomir R; Petrusca L; Auboiroux V; Muller A; Vargas MI; Morel DR; Goget T; Breguet R; Terraz S; Hopple J; Montet X; Becker CD; Viallon M
    Invest Radiol; 2013 Jun; 48(6):366-80. PubMed ID: 23344514
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Acoustic power measurement of high intensity focused ultrasound in medicine based on radiation force.
    Shou W; Huang X; Duan S; Xia R; Shi Z; Geng X; Li F
    Ultrasonics; 2006 Dec; 44 Suppl 1():e17-20. PubMed ID: 16860359
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Simultaneous delivery of electron beam therapy and ultrasound hyperthermia using scanning reflectors: a feasibility study.
    Moros EG; Straube WL; Klein EE; Yousaf M; Myerson RJ
    Int J Radiat Oncol Biol Phys; 1995 Feb; 31(4):893-904. PubMed ID: 7860403
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Sound shielding by a piezoelectric membrane and a negative capacitor with feedback control.
    Sluka T; Kodama H; Fukada E; Mokrý P
    IEEE Trans Ultrason Ferroelectr Freq Control; 2008 Aug; 55(8):1859-66. PubMed ID: 18986928
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A Fabry-Perot fiber-optic ultrasonic hydrophone for the simultaneous measurement of temperature and acoustic pressure.
    Morris P; Hurrell A; Shaw A; Zhang E; Beard P
    J Acoust Soc Am; 2009 Jun; 125(6):3611-22. PubMed ID: 19507943
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Numerical analysis for transverse microbead trapping using 30 MHz focused ultrasound in ray acoustics regime.
    Lee J
    Ultrasonics; 2014 Jan; 54(1):11-9. PubMed ID: 23809757
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Membrane hydrophone measurement and numerical simulation of HIFU fields up to developed shock regimes.
    Bessonova OV; Wilkens V
    IEEE Trans Ultrason Ferroelectr Freq Control; 2013 Feb; 60(2):290-300. PubMed ID: 23357903
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Electromagnetic acoustic imaging.
    Emerson JF; Chang DB; McNaughton S; Jeong JS; Shung KK; Cerwin SA
    IEEE Trans Ultrason Ferroelectr Freq Control; 2013 Feb; 60(2):364-72. PubMed ID: 23357910
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The optimization of acoustic fields for ablative therapies of tumours in the upper abdomen.
    Gélat P; Ter Haar G; Saffari N
    Phys Med Biol; 2012 Dec; 57(24):8471-97. PubMed ID: 23207408
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Development and performance evaluation of an electromagnetic-type shock wave generator for lipolysis.
    Liang SM; Chang MH; Yang ZY
    Rev Sci Instrum; 2014 Jan; 85(1):015113. PubMed ID: 24517818
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Characterization of a fiber-optic displacement sensor for measurements in high-intensity focused ultrasound fields.
    Haller J; Wilkens V; Jenderka KV; Koch C
    J Acoust Soc Am; 2011 Jun; 129(6):3676-81. PubMed ID: 21682392
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Evaluation of Electromagnetic Fields in a Hospital for Safe Use of Electronic Medical Equipment.
    Ishida K; Fujioka T; Endo T; Hosokawa R; Fujisaki T; Yoshino R; Hirose M
    J Med Syst; 2016 Mar; 40(3):46. PubMed ID: 26643076
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Ultrasound imparted air-recoil resonance (UIAR) method for acoustic power estimation: theory and experiment.
    Kaiplavil S; Rivens I; ter Haar G
    IEEE Trans Ultrason Ferroelectr Freq Control; 2013 Jul; 60(7):1343-55. PubMed ID: 25004503
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Attenuation and de-focusing during high-intensity focused ultrasound therapy through peri-nephric fat.
    Ritchie R; Collin J; Coussios C; Leslie T
    Ultrasound Med Biol; 2013 Oct; 39(10):1785-93. PubMed ID: 23932273
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.