These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
141 related articles for article (PubMed ID: 26406165)
1. Markov Chain Analysis of Cumulative Step-Size Adaptation on a Linear Constrained Problem. Chotard A; Auger A; Hansen N Evol Comput; 2015; 23(4):611-40. PubMed ID: 26406165 [TBL] [Abstract][Full Text] [Related]
2. Comparison of Constraint-Handling Mechanisms for the (1,λ)-ES on a Simple Constrained Problem. Hellwig M; Arnold DV Evol Comput; 2016; 24(1):1-23. PubMed ID: 25322066 [TBL] [Abstract][Full Text] [Related]
3. The Dynamics of Cumulative Step Size Adaptation on the Ellipsoid Model. Beyer HG; Hellwig M Evol Comput; 2016; 24(1):25-57. PubMed ID: 25478663 [TBL] [Abstract][Full Text] [Related]
4. Resampling versus repair in evolution strategies applied to a constrained linear problem. Arnold DV Evol Comput; 2013; 21(3):389-411. PubMed ID: 22780871 [TBL] [Abstract][Full Text] [Related]
5. On the behaviour of the (1, λ)-ES for conically constrained linear problems. Arnold DV Evol Comput; 2014; 22(3):503-23. PubMed ID: 24605845 [TBL] [Abstract][Full Text] [Related]
6. Reducing the time complexity of the derandomized evolution strategy with covariance matrix adaptation (CMA-ES). Hansen N; Müller SD; Koumoutsakos P Evol Comput; 2003; 11(1):1-18. PubMed ID: 12804094 [TBL] [Abstract][Full Text] [Related]
7. Analysis of the Spettel P; Beyer HG Evol Comput; 2020; 28(3):463-488. PubMed ID: 31276424 [TBL] [Abstract][Full Text] [Related]
9. Theoretical analysis of mutation-adaptive evolutionary algorithms. Agapie A Evol Comput; 2001; 9(2):127-46. PubMed ID: 11382353 [TBL] [Abstract][Full Text] [Related]
10. Drift and scaling in estimation of distribution algorithms. Shapiro JL Evol Comput; 2005; 13(1):99-123. PubMed ID: 15901428 [TBL] [Abstract][Full Text] [Related]
11. Markov chains: computing limit existence and approximations with DNA. Cardona M; Colomer MA; Conde J; Miret JM; Miró J; Zaragoza A Biosystems; 2005 Sep; 81(3):261-6. PubMed ID: 15982800 [TBL] [Abstract][Full Text] [Related]
12. A constraint-based evolutionary learning approach to the expectation maximization for optimal estimation of the hidden Markov model for speech signal modeling. Huda S; Yearwood J; Togneri R IEEE Trans Syst Man Cybern B Cybern; 2009 Feb; 39(1):182-97. PubMed ID: 19068441 [TBL] [Abstract][Full Text] [Related]
13. A Bayesian method for construction of Markov models to describe dynamics on various time-scales. Rains EK; Andersen HC J Chem Phys; 2010 Oct; 133(14):144113. PubMed ID: 20949993 [TBL] [Abstract][Full Text] [Related]
14. A new constant memory recursion for hidden Markov models. Bartolucci F; Pandolfi S J Comput Biol; 2014 Feb; 21(2):99-117. PubMed ID: 24160767 [TBL] [Abstract][Full Text] [Related]
16. Estimation of distribution algorithms with Kikuchi approximations. Santana R Evol Comput; 2005; 13(1):67-97. PubMed ID: 15901427 [TBL] [Abstract][Full Text] [Related]
17. Qualms regarding the optimality of cumulative path length control in CSA/CMA-evolution strategies. Beyer HG; Arnold DV Evol Comput; 2003; 11(1):19-28. PubMed ID: 12804095 [TBL] [Abstract][Full Text] [Related]
18. Markov models for biogeography-based optimization. Simon D; Ergezer M; Du D; Rarick R IEEE Trans Syst Man Cybern B Cybern; 2011 Feb; 41(1):299-306. PubMed ID: 20595090 [TBL] [Abstract][Full Text] [Related]
19. Computation of mutual information from Hidden Markov Models. Reker D; Katzenbeisser S; Hamacher K Comput Biol Chem; 2010 Dec; 34(5-6):328-33. PubMed ID: 20951093 [TBL] [Abstract][Full Text] [Related]