These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
166 related articles for article (PubMed ID: 26406245)
21. Greedy learning of binary latent trees. Harmeling S; Williams CK IEEE Trans Pattern Anal Mach Intell; 2011 Jun; 33(6):1087-97. PubMed ID: 20714018 [TBL] [Abstract][Full Text] [Related]
22. Bayesian clustering of flow cytometry data for the diagnosis of B-chronic lymphocytic leukemia. Lakoumentas J; Drakos J; Karakantza M; Nikiforidis GC; Sakellaropoulos GC J Biomed Inform; 2009 Apr; 42(2):251-61. PubMed ID: 19084613 [TBL] [Abstract][Full Text] [Related]
23. A non-parametric Bayesian approach for clustering and tracking non-stationarities of neural spikes. Shalchyan V; Farina D J Neurosci Methods; 2014 Feb; 223():85-91. PubMed ID: 24333470 [TBL] [Abstract][Full Text] [Related]
24. Model-based clustering of meta-analytic functional imaging data. Neumann J; von Cramon DY; Lohmann G Hum Brain Mapp; 2008 Feb; 29(2):177-92. PubMed ID: 17390315 [TBL] [Abstract][Full Text] [Related]
25. Reliability of information-based integration of EEG and fMRI data: a simulation study. Assecondi S; Ostwald D; Bagshaw AP Neural Comput; 2015 Feb; 27(2):281-305. PubMed ID: 25514112 [TBL] [Abstract][Full Text] [Related]
26. Bayesian Inference for Functional Dynamics Exploring in fMRI Data. Guo X; Liu B; Chen L; Chen G; Pan Y; Zhang J Comput Math Methods Med; 2016; 2016():3279050. PubMed ID: 27034708 [TBL] [Abstract][Full Text] [Related]
27. Efficient sensor selection for active information fusion. Zhang Y; Ji Q IEEE Trans Syst Man Cybern B Cybern; 2010 Jun; 40(3):719-28. PubMed ID: 19846377 [TBL] [Abstract][Full Text] [Related]
28. Part 3. Modeling of Multipollutant Profiles and Spatially Varying Health Effects with Applications to Indicators of Adverse Birth Outcomes. Molitor J; Coker E; Jerrett M; Ritz B; Li A; Res Rep Health Eff Inst; 2016 Apr; (183 Pt 3):3-47. PubMed ID: 27459845 [TBL] [Abstract][Full Text] [Related]
29. Bayesian supervised dimensionality reduction. Gönen M IEEE Trans Cybern; 2013 Dec; 43(6):2179-89. PubMed ID: 23757527 [TBL] [Abstract][Full Text] [Related]
30. A hierarchical Bayesian modeling approach to searching and stopping in multi-attribute judgment. van Ravenzwaaij D; Moore CP; Lee MD; Newell BR Cogn Sci; 2014; 38(7):1384-405. PubMed ID: 24646326 [TBL] [Abstract][Full Text] [Related]
31. Bayesian k-Means as a "maximization-expectation" algorithm. Kurihara K; Welling M Neural Comput; 2009 Apr; 21(4):1145-72. PubMed ID: 19199394 [TBL] [Abstract][Full Text] [Related]
32. Empirical Markov Chain Monte Carlo Bayesian analysis of fMRI data. de Pasquale F; Del Gratta C; Romani GL Neuroimage; 2008 Aug; 42(1):99-111. PubMed ID: 18538586 [TBL] [Abstract][Full Text] [Related]
33. A fully Bayesian approach to the parcel-based detection-estimation of brain activity in fMRI. Makni S; Idier J; Vincent T; Thirion B; Dehaene-Lambertz G; Ciuciu P Neuroimage; 2008 Jul; 41(3):941-69. PubMed ID: 18439839 [TBL] [Abstract][Full Text] [Related]
34. H-CLAP: hierarchical clustering within a linear array with an application in genetics. Ghosh S; Townsend JP Stat Appl Genet Mol Biol; 2015 Apr; 14(2):125-41. PubMed ID: 25803088 [TBL] [Abstract][Full Text] [Related]
35. Hybrid hierarchical clustering with applications to microarray data. Chipman H; Tibshirani R Biostatistics; 2006 Apr; 7(2):286-301. PubMed ID: 16301308 [TBL] [Abstract][Full Text] [Related]
36. A hierarchical Naïve Bayes Model for handling sample heterogeneity in classification problems: an application to tissue microarrays. Demichelis F; Magni P; Piergiorgi P; Rubin MA; Bellazzi R BMC Bioinformatics; 2006 Nov; 7():514. PubMed ID: 17125514 [TBL] [Abstract][Full Text] [Related]
37. A wavelet-based Bayesian approach to regression models with long memory errors and its application to FMRI data. Jeong J; Vannucci M; Ko K Biometrics; 2013 Mar; 69(1):184-96. PubMed ID: 23379536 [TBL] [Abstract][Full Text] [Related]
38. Bayesian filtering of human brain hemodynamic activity elicited by visual short-term maintenance recorded through functional near-infrared spectroscopy (fNIRS). Scarpa F; Cutini S; Scatturin P; Dell'Acqua R; Sparacino G Opt Express; 2010 Dec; 18(25):26550-68. PubMed ID: 21165006 [TBL] [Abstract][Full Text] [Related]
39. Comparison of Criteria for Choosing the Number of Classes in Bayesian Finite Mixture Models. Nasserinejad K; van Rosmalen J; de Kort W; Lesaffre E PLoS One; 2017; 12(1):e0168838. PubMed ID: 28081166 [TBL] [Abstract][Full Text] [Related]
40. Hierarchical Bayesian estimation for MEG inverse problem. Sato MA; Yoshioka T; Kajihara S; Toyama K; Goda N; Doya K; Kawato M Neuroimage; 2004 Nov; 23(3):806-26. PubMed ID: 15528082 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]