These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
189 related articles for article (PubMed ID: 26406328)
1. Evaluating the Performance of Fine-Mapping Strategies at Common Variant GWAS Loci. van de Bunt M; Cortes A; ; Brown MA; Morris AP; McCarthy MI PLoS Genet; 2015; 11(9):e1005535. PubMed ID: 26406328 [TBL] [Abstract][Full Text] [Related]
3. Trans-ethnic meta-regression of genome-wide association studies accounting for ancestry increases power for discovery and improves fine-mapping resolution. Mägi R; Horikoshi M; Sofer T; Mahajan A; Kitajima H; Franceschini N; McCarthy MI; ; Morris AP Hum Mol Genet; 2017 Sep; 26(18):3639-3650. PubMed ID: 28911207 [TBL] [Abstract][Full Text] [Related]
4. Improved methods for multi-trait fine mapping of pleiotropic risk loci. Kichaev G; Roytman M; Johnson R; Eskin E; Lindström S; Kraft P; Pasaniuc B Bioinformatics; 2017 Jan; 33(2):248-255. PubMed ID: 27663501 [TBL] [Abstract][Full Text] [Related]
5. Quantifying the mapping precision of genome-wide association studies using whole-genome sequencing data. Wu Y; Zheng Z; Visscher PM; Yang J Genome Biol; 2017 May; 18(1):86. PubMed ID: 28506277 [TBL] [Abstract][Full Text] [Related]
6. Genetic fine-mapping from summary data using a nonlocal prior improves the detection of multiple causal variants. Karhunen V; Launonen I; Järvelin MR; Sebert S; Sillanpää MJ Bioinformatics; 2023 Jul; 39(7):. PubMed ID: 37348543 [TBL] [Abstract][Full Text] [Related]
7. From genome-wide associations to candidate causal variants by statistical fine-mapping. Schaid DJ; Chen W; Larson NB Nat Rev Genet; 2018 Aug; 19(8):491-504. PubMed ID: 29844615 [TBL] [Abstract][Full Text] [Related]
8. Fine-mapping across diverse ancestries drives the discovery of putative causal variants underlying human complex traits and diseases. Yuan K; Longchamps RJ; Pardiñas AF; Yu M; Chen TT; Lin SC; Chen Y; Lam M; Liu R; Xia Y; Guo Z; Shi W; Shen C; ; Daly MJ; Neale BM; Feng YA; Lin YF; Chen CY; O'Donovan MC; Ge T; Huang H Nat Genet; 2024 Sep; 56(9):1841-1850. PubMed ID: 39187616 [TBL] [Abstract][Full Text] [Related]
9. Improving the coverage of credible sets in Bayesian genetic fine-mapping. Hutchinson A; Watson H; Wallace C PLoS Comput Biol; 2020 Apr; 16(4):e1007829. PubMed ID: 32282791 [TBL] [Abstract][Full Text] [Related]
10. Identifying candidate causal variants via trans-population fine-mapping. Teo YY; Ong RT; Sim X; Tai ES; Chia KS Genet Epidemiol; 2010 Nov; 34(7):653-64. PubMed ID: 20839287 [TBL] [Abstract][Full Text] [Related]
11. Identification of potential genetic causal variants for obesity-related traits using statistical fine mapping. Gong R; Greenbaum J; Lin X; Du Y; Su KJ; Gong Y; Shen J; Deng HW Mol Genet Genomics; 2023 Nov; 298(6):1309-1319. PubMed ID: 37498361 [TBL] [Abstract][Full Text] [Related]
12. Trans-ethnic study design approaches for fine-mapping. Asimit JL; Hatzikotoulas K; McCarthy M; Morris AP; Zeggini E Eur J Hum Genet; 2016 Aug; 24(9):1330-6. PubMed ID: 26839038 [TBL] [Abstract][Full Text] [Related]
13. Hierarchical joint analysis of marginal summary statistics-Part I: Multipopulation fine mapping and credible set construction. Shen J; Jiang L; Wang K; Wang A; Chen F; Newcombe PJ; Haiman CA; Conti DV Genet Epidemiol; 2024 Sep; 48(6):241-257. PubMed ID: 38606643 [TBL] [Abstract][Full Text] [Related]
14. CARMA is a new Bayesian model for fine-mapping in genome-wide association meta-analyses. Yang Z; Wang C; Liu L; Khan A; Lee A; Vardarajan B; Mayeux R; Kiryluk K; Ionita-Laza I Nat Genet; 2023 Jun; 55(6):1057-1065. PubMed ID: 37169873 [TBL] [Abstract][Full Text] [Related]
15. Genetic architecture of type 2 diabetes. Hara K; Shojima N; Hosoe J; Kadowaki T Biochem Biophys Res Commun; 2014 Sep; 452(2):213-20. PubMed ID: 25111817 [TBL] [Abstract][Full Text] [Related]
16. Weighting sequence variants based on their annotation increases the power of genome-wide association studies in dairy cattle. Cai Z; Guldbrandtsen B; Lund MS; Sahana G Genet Sel Evol; 2019 May; 51(1):20. PubMed ID: 31077144 [TBL] [Abstract][Full Text] [Related]
17. SparsePro: An efficient fine-mapping method integrating summary statistics and functional annotations. Zhang W; Najafabadi H; Li Y PLoS Genet; 2023 Dec; 19(12):e1011104. PubMed ID: 38153934 [TBL] [Abstract][Full Text] [Related]
18. Trans-ethnic meta-analysis of white blood cell phenotypes. Keller MF; Reiner AP; Okada Y; van Rooij FJ; Johnson AD; Chen MH; Smith AV; Morris AP; Tanaka T; Ferrucci L; Zonderman AB; Lettre G; Harris T; Garcia M; Bandinelli S; Qayyum R; Yanek LR; Becker DM; Becker LC; Kooperberg C; Keating B; Reis J; Tang H; Boerwinkle E; Kamatani Y; Matsuda K; Kamatani N; Nakamura Y; Kubo M; Liu S; Dehghan A; Felix JF; Hofman A; Uitterlinden AG; van Duijn CM; Franco OH; Longo DL; Singleton AB; Psaty BM; Evans MK; Cupples LA; Rotter JI; O'Donnell CJ; Takahashi A; Wilson JG; Ganesh SK; Nalls MA; ; ; Hum Mol Genet; 2014 Dec; 23(25):6944-60. PubMed ID: 25096241 [TBL] [Abstract][Full Text] [Related]
19. A Multi-omic Integrative Scheme Characterizes Tissues of Action at Loci Associated with Type 2 Diabetes. Torres JM; Abdalla M; Payne A; Fernandez-Tajes J; Thurner M; Nylander V; Gloyn AL; Mahajan A; McCarthy MI Am J Hum Genet; 2020 Dec; 107(6):1011-1028. PubMed ID: 33186544 [TBL] [Abstract][Full Text] [Related]
20. Fine Mapping Causal Variants with an Approximate Bayesian Method Using Marginal Test Statistics. Chen W; Larrabee BR; Ovsyannikova IG; Kennedy RB; Haralambieva IH; Poland GA; Schaid DJ Genetics; 2015 Jul; 200(3):719-36. PubMed ID: 25948564 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]