These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

81 related articles for article (PubMed ID: 26406645)

  • 1. Random laser with superscatterers at designable wavelengths.
    Wang P; Zhang X; Xiang Y; Shi F; Gavryliak M; Xu J
    Opt Express; 2015 Sep; 23(19):24407-15. PubMed ID: 26406645
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Atomically thin spherical shell-shaped superscatterers based on a Bohr model.
    Li R; Lin X; Lin S; Liu X; Chen H
    Nanotechnology; 2015 Dec; 26(50):505201. PubMed ID: 26580845
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Persistent coherent random lasing using resonant scatterers.
    Uppu R; Mujumdar S
    Opt Express; 2011 Nov; 19(23):23523-31. PubMed ID: 22109230
    [TBL] [Abstract][Full Text] [Related]  

  • 4. From Fano-like interference to superscattering with a single metallic nanodisk.
    Wan W; Zheng W; Chen Y; Liu Z
    Nanoscale; 2014 Aug; 6(15):9093-102. PubMed ID: 24975582
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Competition between two lasing modes of Sulforhodamine 640 in highly scattering media.
    Sha WL; Liu CH; Liu F; Alfano RR
    Opt Lett; 1996 Aug; 21(16):1277-9. PubMed ID: 19876324
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Random lasing in blue phase liquid crystals.
    Chen CW; Jau HC; Wang CT; Lee CH; Khoo IC; Lin TH
    Opt Express; 2012 Oct; 20(21):23978-84. PubMed ID: 23188364
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Random laser based method for direct measurement of scattering properties.
    Tommasi F; Ignesti E; Fini L; Martelli F; Cavalieri S
    Opt Express; 2018 Oct; 26(21):27615-27627. PubMed ID: 30469824
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Wavelength control of random polymer fiber laser based on adaptive disorder.
    Hu Z; Gao P; Xie K; Liang Y; Jiang H
    Opt Lett; 2014 Dec; 39(24):6911-4. PubMed ID: 25503028
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Random fiber laser formed by mixing dispersion compensated fiber and single mode fiber.
    Zhang WL; Zhu YY; Rao YJ; Wang ZN; Jia XH; Wu H
    Opt Express; 2013 Apr; 21(7):8544-9. PubMed ID: 23571943
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Random lasing in ballistic and diffusiveregimes for macroporous silica-based systems with tunable scattering strength.
    Meng X; Fujita K; Murai S; Konishi J; Mano M; Tanaka K
    Opt Express; 2010 Jun; 18(12):12153-60. PubMed ID: 20588338
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Gold nanostars for random lasing enhancement.
    Ziegler J; Djiango M; Vidal C; Hrelescu C; Klar TA
    Opt Express; 2015 Jun; 23(12):15152-9. PubMed ID: 26193498
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Observation of narrow linewidth spikes in the coherent Brillouin random fiber laser.
    Pang M; Bao X; Chen L
    Opt Lett; 2013 Jun; 38(11):1866-8. PubMed ID: 23722771
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Fully switchable multiwavelength fiber laser assisted by a random mirror.
    DeMiguel-Soto V; Bravo M; Lopez-Amo M
    Opt Lett; 2014 Apr; 39(7):2020-3. PubMed ID: 24686664
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Random fiber laser.
    de Matos CJ; de S Menezes L; Brito-Silva AM; Martinez Gámez MA; Gomes AS; de Araújo CB
    Phys Rev Lett; 2007 Oct; 99(15):153903. PubMed ID: 17995168
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Non-line-of-sight ultraviolet single-scatter propagation model in random turbulent medium.
    Xiao H; Zuo Y; Wu J; Li Y; Lin J
    Opt Lett; 2013 Sep; 38(17):3366-9. PubMed ID: 23988959
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Hybrid lasing in an ultra-long ring fiber laser.
    Rao YJ; Zhang WL; Zhu JM; Yang ZX; Wang ZN; Jia XH
    Opt Express; 2012 Sep; 20(20):22563-8. PubMed ID: 23037405
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Enhanced random lasing in ZnO nanocombs assisted by Fabry-Perot resonance.
    Chen Y; Chen Y
    Opt Express; 2011 Apr; 19(9):8728-34. PubMed ID: 21643125
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Photon localization laser: low-threshold lasing in a random amplifying layered medium via wave localization.
    Milner V; Genack AZ
    Phys Rev Lett; 2005 Feb; 94(7):073901. PubMed ID: 15783816
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Electric-field-induced random lasing from ZnO and Mg0.1Zn0.9O films optically pumped with an extremely low intensity.
    Chen P; Ma X; Li D; Zhang Y; Yang D
    Opt Express; 2009 Oct; 17(21):18513-7. PubMed ID: 20372581
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Isotropically polarized speckle patterns.
    Schmidt MK; Aizpurua J; Zambrana-Puyalto X; Vidal X; Molina-Terriza G; Sáenz JJ
    Phys Rev Lett; 2015 Mar; 114(11):113902. PubMed ID: 25839272
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.