These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

127 related articles for article (PubMed ID: 26406688)

  • 1. Local detection efficiency of a NbN superconducting single photon detector explored by a scattering scanning near-field optical microscope.
    Wang Q; Renema JJ; Engel A; van Exter MP; de Dood MJ
    Opt Express; 2015 Sep; 23(19):24873-87. PubMed ID: 26406688
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A 64-pixel NbTiN superconducting nanowire single-photon detector array for spatially resolved photon detection.
    Miki S; Yamashita T; Wang Z; Terai H
    Opt Express; 2014 Apr; 22(7):7811-20. PubMed ID: 24718157
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Position-Dependent Local Detection Efficiency in a Nanowire Superconducting Single-Photon Detector.
    Renema JJ; Wang Q; Gaudio R; Komen I; op 't Hoog K; Sahin D; Schilling A; van Exter MP; Fiore A; Engel A; de Dood MJ
    Nano Lett; 2015 Jul; 15(7):4541-5. PubMed ID: 26087352
    [TBL] [Abstract][Full Text] [Related]  

  • 4. An absorption-based superconducting nano-detector as a near-field optical probe.
    Wang Q; de Dood MJ
    Opt Express; 2013 Feb; 21(3):3682-92. PubMed ID: 23481824
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Multimode fiber-coupled superconducting nanowire single-photon detector with 70% system efficiency at visible wavelength.
    Liu D; Miki S; Yamashita T; You L; Wang Z; Terai H
    Opt Express; 2014 Sep; 22(18):21167-74. PubMed ID: 25321497
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Large-sensitive-area superconducting nanowire single-photon detector at 850 nm with high detection efficiency.
    Li H; Zhang L; You L; Yang X; Zhang W; Liu X; Chen S; Wang Z; Xie X
    Opt Express; 2015 Jun; 23(13):17301-8. PubMed ID: 26191739
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Coupling efficiency of probes in emission-mode scanning near-field optical microscopy.
    Alvarez L; Xiao M
    J Microsc; 2008 Feb; 229(Pt 2):371-6. PubMed ID: 18304099
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Ultra-broadband microfiber-coupled superconducting single-photon detector.
    Hou X; Yao N; You L; Li H; Wang Y; Zhang W; Wang H; Liu X; Fang W; Tong L; Wang Z; Xie X
    Opt Express; 2019 Sep; 27(18):25241-25250. PubMed ID: 31510399
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Superconducting nanowire single-photon detectors integrated with optical nano-antennae.
    Hu X; Dauler EA; Molnar RJ; Berggren KK
    Opt Express; 2011 Jan; 19(1):17-31. PubMed ID: 21263538
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Towards phonon photonics: scattering-type near-field optical microscopy reveals phonon-enhanced near-field interaction.
    Hillenbrand R
    Ultramicroscopy; 2004 Aug; 100(3-4):421-7. PubMed ID: 15231334
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Development of apertureless near-field scanning optical microscope tips for tip-enhanced Raman spectroscopy.
    Kodama T; Umezawa T; Watanabe S; Ohtani H
    J Microsc; 2008 Feb; 229(Pt 2):240-6. PubMed ID: 18304079
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A fiber scanning tunneling microscope for optical analysis at the nanoscale.
    Jakob R; Nilius N
    Rev Sci Instrum; 2020 Jul; 91(7):073110. PubMed ID: 32752868
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Polarization and detection angle dependence of interferometric imaging with scattering near-field scanning optical microscope.
    Liu C; Park SH
    Opt Express; 2004 Dec; 12(25):6341-9. PubMed ID: 19488281
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Revealing local, enhanced optical field characteristics of Au nanoparticle arrays with 10 nm gap using scattering-type scanning near-field optical microscopy.
    Cheng TY; Wang HH; Chang SH; Chu JY; Lee JH; Wang YL; Wang JK
    Phys Chem Chem Phys; 2013 Mar; 15(12):4275-82. PubMed ID: 23439965
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Titanium-based transition-edge photon number resolving detector with 98% detection efficiency with index-matched small-gap fiber coupling.
    Fukuda D; Fujii G; Numata T; Amemiya K; Yoshizawa A; Tsuchida H; Fujino H; Ishii H; Itatani T; Inoue S; Zama T
    Opt Express; 2011 Jan; 19(2):870-5. PubMed ID: 21263626
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Modeling scanning near-field optical photons scattered from an atomic force microscope for quantum metrology.
    Khajavi S; Shaterzadeh-Yazdi Z; Eghrari A; Neshat M
    Ultramicroscopy; 2024 Jan; 255():113863. PubMed ID: 37837794
    [TBL] [Abstract][Full Text] [Related]  

  • 17. High-resolution apertureless near-field optical imaging using gold nanosphere probes.
    Kim ZH; Leone SR
    J Phys Chem B; 2006 Oct; 110(40):19804-9. PubMed ID: 17020365
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Probe design optimization for a high-resolution scattering-type scanning near-field optical microscope.
    Sasaki Y; Sasaki H
    J Microsc; 2001 May; 202(Pt 2):347-50. PubMed ID: 11309093
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Scanning superconducting quantum interference device on a tip for magnetic imaging of nanoscale phenomena.
    Finkler A; Vasyukov D; Segev Y; Ne'eman L; Lachman EO; Rappaport ML; Myasoedov Y; Zeldov E; Huber ME
    Rev Sci Instrum; 2012 Jul; 83(7):073702. PubMed ID: 22852696
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Dynamic etching method for fabricating a variety of tip shapes in the optical fibre probe of a scanning near-field optical microscope.
    Muramatsu H; Homma K; Chiba N; Yamamoto N; Egawa A
    J Microsc; 1999; 194(Pt 2-3):383-7. PubMed ID: 11388272
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.