These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

105 related articles for article (PubMed ID: 26406740)

  • 21. Self-assembled plasmonic nanoparticle clusters.
    Fan JA; Wu C; Bao K; Bao J; Bardhan R; Halas NJ; Manoharan VN; Nordlander P; Shvets G; Capasso F
    Science; 2010 May; 328(5982):1135-8. PubMed ID: 20508125
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Significantly increased surface plasmon polariton mode excitation using a multilayer insulation structure in a metal-insulator-metal plasmonic waveguide.
    Yang H; Li J; Xiao G
    Appl Opt; 2014 Jun; 53(17):3642-6. PubMed ID: 24921127
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Nanoshell-enabled photothermal cancer therapy: impending clinical impact.
    Lal S; Clare SE; Halas NJ
    Acc Chem Res; 2008 Dec; 41(12):1842-51. PubMed ID: 19053240
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Shedding light on the growth of gold nanoshells.
    Sauerbeck C; Haderlein M; Schürer B; Braunschweig B; Peukert W; Klupp Taylor RN
    ACS Nano; 2014 Mar; 8(3):3088-96. PubMed ID: 24552660
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Bulk and surface plasmon polariton excitation in RuO₂ for low-loss plasmonic applications in NIR.
    Wang L; Clavero C; Yang K; Radue E; Simons MT; Novikova I; Lukaszew RA
    Opt Express; 2012 Apr; 20(8):8618-28. PubMed ID: 22513571
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Robust multispectral transparency in continuous metal film structures via multiple near-field plasmon coupling by a finite-difference time-domain method.
    Liu GQ; Hu Y; Liu ZQ; Chen YH; Cai ZJ; Zhang XN; Huang K
    Phys Chem Chem Phys; 2014 Mar; 16(9):4320-8. PubMed ID: 24452786
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Energy absorption of gold nanoshells in hyperthermia therapy.
    Liu C; Mi CC; Li BQ
    IEEE Trans Nanobioscience; 2008 Sep; 7(3):206-14. PubMed ID: 18779101
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Long-range surface polaritons in ultra-thin films of silicon.
    Giannini V; Zhang Y; Forcales M; Rivas JG
    Opt Express; 2008 Nov; 16(24):19674-85. PubMed ID: 19030053
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Optical design of organic solar cell with hybrid plasmonic system.
    Sha WE; Choy WC; Chen YP; Chew WC
    Opt Express; 2011 Aug; 19(17):15908-18. PubMed ID: 21934954
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Ultrastrong coupling of plasmons and excitons in a nanoshell.
    Cacciola A; Di Stefano O; Stassi R; Saija R; Savasta S
    ACS Nano; 2014 Nov; 8(11):11483-92. PubMed ID: 25337782
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Interplay between strong coupling and radiative damping of excitons and surface plasmon polaritons in hybrid nanostructures.
    Wang W; Vasa P; Pomraenke R; Vogelgesang R; De Sio A; Sommer E; Maiuri M; Manzoni C; Cerullo G; Lienau C
    ACS Nano; 2014 Jan; 8(1):1056-64. PubMed ID: 24377290
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Near-infrared surface plasmon polariton dispersion control with hyperbolic metamaterials.
    Luk TS; Kim I; Campione S; Howell SW; Subramania GS; Grubbs RK; Brener I; Chen HT; Fan S; Sinclair MB
    Opt Express; 2013 May; 21(9):11107-14. PubMed ID: 23669967
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Tailoring alphabetical metamaterials in optical frequency: plasmonic coupling, dispersion, and sensing.
    Zhang J; Cao C; Xu X; Liow C; Li S; Tan P; Xiong Q
    ACS Nano; 2014 Apr; 8(4):3796-806. PubMed ID: 24670107
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Dispersion relations for coupled surface plasmon-polariton modes excited in multilayer structures.
    Saito H; Namura K; Suzuki M; Kurata H
    Microscopy (Oxf); 2014 Feb; 63(1):85-93. PubMed ID: 24285862
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Self-assembled plasmonic core-shell clusters with an isotropic magnetic dipole response in the visible range.
    Mühlig S; Cunningham A; Scheeler S; Pacholski C; Bürgi T; Rockstuhl C; Lederer F
    ACS Nano; 2011 Aug; 5(8):6586-92. PubMed ID: 21714523
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Few-layer metamaterials for a spontaneous emission enhancement.
    Li L; Zhou Z; Min C; Yuan X
    Opt Lett; 2021 Jan; 46(2):190-193. PubMed ID: 33448985
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Dielectric antennas--a suitable platform for controlling magnetic dipolar emission.
    Schmidt MK; Esteban R; Sáenz JJ; Suárez-Lacalle I; Mackowski S; Aizpurua J
    Opt Express; 2012 Jun; 20(13):13636-50. PubMed ID: 22714428
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Light absorption enhancement in thin silicon film by embedded metallic nanoshells.
    Guilatt O; Apter B; Efron U
    Opt Lett; 2010 Apr; 35(8):1139-41. PubMed ID: 20410945
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Huge enhancement in two-photon photoluminescence of Au nanoparticle clusters revealed by single-particle spectroscopy.
    Guan Z; Gao N; Jiang XF; Yuan P; Han F; Xu QH
    J Am Chem Soc; 2013 May; 135(19):7272-7. PubMed ID: 23607514
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Three-dimensional self-assembled photonic crystals with high temperature stability for thermal emission modification.
    Arpin KA; Losego MD; Cloud AN; Ning H; Mallek J; Sergeant NP; Zhu L; Yu Z; Kalanyan B; Parsons GN; Girolami GS; Abelson JR; Fan S; Braun PV
    Nat Commun; 2013; 4():2630. PubMed ID: 24129680
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.