These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

85 related articles for article (PubMed ID: 26406751)

  • 1. Light-trapping in photon enhanced thermionic emitters.
    Buencuerpo J; Llorens JM; Zilio P; Raja W; Cunha J; Alabastri A; Zaccaria RP; Martí A; Versloot T
    Opt Express; 2015 Sep; 23(19):A1220-35. PubMed ID: 26406751
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Nano-photonic light trapping near the Lambertian limit in organic solar cell architectures.
    Biswas R; Timmons E
    Opt Express; 2013 Sep; 21 Suppl 5():A841-6. PubMed ID: 24104579
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Comparison of Light Trapping Limits Derived Using Various Methods for Thin Film GaAs Solar Cells.
    Gupta ND
    J Nanosci Nanotechnol; 2020 Jun; 20(6):3939-3942. PubMed ID: 31748100
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Superlattice photonic crystal as broadband solar absorber for high temperature operation.
    Rinnerbauer V; Shen Y; Joannopoulos JD; Soljačić M; Schäffler F; Celanovic I
    Opt Express; 2014 Dec; 22 Suppl 7():A1895-906. PubMed ID: 25607503
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Synergistic plasmonic and photonic crystal light-trapping: architectures for optical up-conversion in thin-film solar cells.
    Le KQ; John S
    Opt Express; 2014 Jan; 22 Suppl 1():A1-12. PubMed ID: 24921986
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Photon-enhanced thermionic emission from heterostructures with low interface recombination.
    Schwede JW; Sarmiento T; Narasimhan VK; Rosenthal SJ; Riley DC; Schmitt F; Bargatin I; Sahasrabuddhe K; Howe RT; Harris JS; Melosh NA; Shen ZX
    Nat Commun; 2013; 4():1576. PubMed ID: 23481384
    [TBL] [Abstract][Full Text] [Related]  

  • 7. How to assess light trapping structures versus a Lambertian Scatterer for solar cells?
    Schuster CS; Bozzola A; Andreani LC; Krauss TF
    Opt Express; 2014 Mar; 22 Suppl 2():A542-51. PubMed ID: 24922263
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Semiconductor thermionics for next generation solar cells: photon enhanced or pure thermionic?
    Rahman E; Nojeh A
    Nat Commun; 2021 Jul; 12(1):4622. PubMed ID: 34330924
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Optimization of periodic nanostructures for enhanced light-trapping in ultra-thin photovoltaics.
    Wang P; Menon R
    Opt Express; 2013 Mar; 21(5):6274-85. PubMed ID: 23482196
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Periodic dielectric structures for light-trapping in InGaAs/GaAs quantum well solar cells.
    Turner S; Mokkapati S; Jolley G; Fu L; Tan HH; Jagadish C
    Opt Express; 2013 May; 21 Suppl 3():A324-35. PubMed ID: 24104420
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Optical absorption enhancement in a hybrid system photonic crystal - thin substrate for photovoltaic applications.
    Buencuerpo J; Munioz-Camuniez LE; Dotor ML; Postigo PA
    Opt Express; 2012 Jul; 20 Suppl 4():A452-64. PubMed ID: 22828614
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Photonic light-trapping versus Lambertian limits in thin film silicon solar cells with 1D and 2D periodic patterns.
    Bozzola A; Liscidini M; Andreani LC
    Opt Express; 2012 Mar; 20 Suppl 2():A224-44. PubMed ID: 22418672
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Computational analysis of thin film InGaAs/GaAs quantum well solar cells with back side light trapping structures.
    McPheeters CO; Yu ET
    Opt Express; 2012 Nov; 20 Suppl 6():A864-78. PubMed ID: 23187663
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Computational analysis of thin film InGaAs/GaAs quantum well solar cells with back side light trapping structures.
    McPheeters CO; Yu ET
    Opt Express; 2012 Nov; 20(23):A864-78. PubMed ID: 23326834
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Increasing the conversion efficiency of dye-sensitized TiO2 photoelectrochemical cells by coupling to photonic crystals.
    Halaoui LI; Abrams NM; Mallouk TE
    J Phys Chem B; 2005 Apr; 109(13):6334-42. PubMed ID: 16851706
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Efficient multiband absorber based on one-dimensional periodic metal-dielectric photonic crystal with a reflective substrate.
    Wang W; Cui Y; He Y; Hao Y; Lin Y; Tian X; Ji T; He S
    Opt Lett; 2014 Jan; 39(2):331-4. PubMed ID: 24562139
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Microbead-separated thermionic energy converter with enhanced emission current.
    Littau KA; Sahasrabuddhe K; Barfield D; Yuan H; Shen ZX; Howe RT; Melosh NA
    Phys Chem Chem Phys; 2013 Sep; 15(34):14442-6. PubMed ID: 23881241
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Light trapping in ultrathin silicon photonic crystal superlattices with randomly-textured dielectric incouplers.
    Callahan DM; Horowitz KA; Atwater HA
    Opt Express; 2013 Dec; 21(25):30315-26. PubMed ID: 24514610
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Light trapping in thin-film solar cells with randomly rough and hybrid textures.
    Kowalczewski P; Liscidini M; Andreani LC
    Opt Express; 2013 Sep; 21 Suppl 5():A808-20. PubMed ID: 24104576
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Light trapping and near-unity solar absorption in a three-dimensional photonic-crystal.
    Kuang P; Deinega A; Hsieh ML; John S; Lin SY
    Opt Lett; 2013 Oct; 38(20):4200-3. PubMed ID: 24321959
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.