These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

613 related articles for article (PubMed ID: 26406784)

  • 61. Evaluation of electromagnetic enhancement of surface enhanced hyper Raman scattering using plasmonic properties of binary active sites in single Ag nanoaggregates.
    Itoh T; Yoshikawa H; Yoshida K; Biju V; Ishikawa M
    J Chem Phys; 2009 Jun; 130(21):214706. PubMed ID: 19508086
    [TBL] [Abstract][Full Text] [Related]  

  • 62. Ultrafast and nonlinear surface-enhanced Raman spectroscopy.
    Gruenke NL; Cardinal MF; McAnally MO; Frontiera RR; Schatz GC; Van Duyne RP
    Chem Soc Rev; 2016 Apr; 45(8):2263-90. PubMed ID: 26848784
    [TBL] [Abstract][Full Text] [Related]  

  • 63. Vibrational spectroscopic (FT-IR, FT-Raman, SERS) and quantum chemical calculations of 3-(10,10-dimethyl-anthracen-9-ylidene)-N,N,N-trimethylpropanaminiium chloride (Melitracenium chloride).
    Mary YS; Jojo PJ; Van Alsenoy C; Kaur M; Siddegowda MS; Yathirajan HS; Nogueira HI; Cruz SM
    Spectrochim Acta A Mol Biomol Spectrosc; 2014; 120():370-80. PubMed ID: 24200651
    [TBL] [Abstract][Full Text] [Related]  

  • 64. IR, Raman and SERS spectral analysis and DFT calculations on the Herbicide O,S-Dimethyl phosphoramidothioate, metamidophos.
    Fleming GD; Villagrán J; Koch R
    Spectrochim Acta A Mol Biomol Spectrosc; 2013 Oct; 114():120-8. PubMed ID: 23756261
    [TBL] [Abstract][Full Text] [Related]  

  • 65. High-speed imaging of surface-enhanced Raman scattering fluctuations from individual nanoparticles.
    Lindquist NC; de Albuquerque CDL; Sobral-Filho RG; Paci I; Brolo AG
    Nat Nanotechnol; 2019 Oct; 14(10):981-987. PubMed ID: 31527841
    [TBL] [Abstract][Full Text] [Related]  

  • 66. Plasmonic silver nanospheres embedded ε-caprolactone/reduced graphite oxide nanolayers as active SERS substrates.
    Veerabaghu PP; Ramasamy P; Sathe V; Ramasamy A; Mahalingam U
    Mater Sci Eng C Mater Biol Appl; 2019 Aug; 101():431-437. PubMed ID: 31029338
    [TBL] [Abstract][Full Text] [Related]  

  • 67. Surface-enhanced Raman scattering system of sample molecules in silver-modified silver film.
    Niu Z; Fang Y
    Spectrochim Acta A Mol Biomol Spectrosc; 2007 Mar; 66(3):712-6. PubMed ID: 16876472
    [TBL] [Abstract][Full Text] [Related]  

  • 68. In situ monitoring of silver adsorption on assembled gold nanorods by surface-enhanced Raman scattering.
    Zhao F; Wang X; Zhang Y; Lu X; Xie H; Xu B; Ye W; Ni W
    Nanotechnology; 2020 May; 31(29):295601. PubMed ID: 32217813
    [TBL] [Abstract][Full Text] [Related]  

  • 69. A discrete interaction model/quantum mechanical method for simulating surface-enhanced Raman spectroscopy.
    Payton JL; Morton SM; Moore JE; Jensen L
    J Chem Phys; 2012 Jun; 136(21):214103. PubMed ID: 22697526
    [TBL] [Abstract][Full Text] [Related]  

  • 70. Chemical contribution to surface-enhanced Raman scattering.
    Persson BN; Zhao K; Zhang Z
    Phys Rev Lett; 2006 May; 96(20):207401. PubMed ID: 16803204
    [TBL] [Abstract][Full Text] [Related]  

  • 71. Pen-on-paper approach toward the design of universal surface enhanced Raman scattering substrates.
    Polavarapu L; Porta AL; Novikov SM; Coronado-Puchau M; Liz-Marzán LM
    Small; 2014 Aug; 10(15):3065-71. PubMed ID: 24789330
    [TBL] [Abstract][Full Text] [Related]  

  • 72. Effects of chromophore orientation and molecule conformation on surface-enhanced Raman scattering studied with alkanoic acids and colloidal silver nanoparticles.
    Seballos L; Olson TY; Zhang JZ
    J Chem Phys; 2006 Dec; 125(23):234706. PubMed ID: 17190569
    [TBL] [Abstract][Full Text] [Related]  

  • 73. Study of Chemical Enhancement Mechanism in Non-plasmonic Surface Enhanced Raman Spectroscopy (SERS).
    Kim J; Jang Y; Kim NJ; Kim H; Yi GC; Shin Y; Kim MH; Yoon S
    Front Chem; 2019; 7():582. PubMed ID: 31482089
    [TBL] [Abstract][Full Text] [Related]  

  • 74. Surface enhanced Raman scattering (SERS) by molecules adsorbed at spherical particles.
    Kerker M; Wang DS; Chew H
    Appl Opt; 1980 Oct; 19(19):3373-88. PubMed ID: 20234623
    [TBL] [Abstract][Full Text] [Related]  

  • 75. Plasmonic Electronic Raman Scattering as Internal Standard for Spatial and Temporal Calibration in Quantitative Surface-Enhanced Raman Spectroscopy.
    Nam W; Zhao Y; Song J; Ali Safiabadi Tali S; Kang S; Zhu W; Lezec HJ; Agrawal A; Vikesland PJ; Zhou W
    J Phys Chem Lett; 2020 Nov; 11(22):9543-9551. PubMed ID: 33115232
    [TBL] [Abstract][Full Text] [Related]  

  • 76. Marangoni Convection Assisted Single Molecule Detection with Nanojet Surface Enhanced Raman Spectroscopy.
    Chang TW; Wang X; Mahigir A; Veronis G; Liu GL; Gartia MR
    ACS Sens; 2017 Aug; 2(8):1133-1138. PubMed ID: 28726383
    [TBL] [Abstract][Full Text] [Related]  

  • 77. Harnessing Chemical Raman Enhancement for Understanding Organic Adsorbate Binding on Metal Surfaces.
    Zayak AT; Choo H; Hu YS; Gargas DJ; Cabrini S; Bokor J; Schuck PJ; Neaton JB
    J Phys Chem Lett; 2012 May; 3(10):1357-62. PubMed ID: 26286783
    [TBL] [Abstract][Full Text] [Related]  

  • 78. Surface enhanced Raman scattering (SERS) by molecules adsorbed at spherical particles: errata.
    Kerker M; Wang DS; Chew H
    Appl Opt; 1980 Dec; 19(24):4159-74. PubMed ID: 20309031
    [TBL] [Abstract][Full Text] [Related]  

  • 79. Raman spectroelectrochemistry of molecules within individual electromagnetic hot spots.
    Shegai T; Vaskevich A; Rubinstein I; Haran G
    J Am Chem Soc; 2009 Oct; 131(40):14390-8. PubMed ID: 19807184
    [TBL] [Abstract][Full Text] [Related]  

  • 80. Investigating Nanoscale Electrochemistry with Surface- and Tip-Enhanced Raman Spectroscopy.
    Zaleski S; Wilson AJ; Mattei M; Chen X; Goubert G; Cardinal MF; Willets KA; Van Duyne RP
    Acc Chem Res; 2016 Sep; 49(9):2023-30. PubMed ID: 27602428
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 31.