These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

394 related articles for article (PubMed ID: 26406843)

  • 1. Superconducting fluctuations in the normal state of the two-dimensional Hubbard model.
    Chen X; LeBlanc JP; Gull E
    Phys Rev Lett; 2015 Sep; 115(11):116402. PubMed ID: 26406843
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Mechanism for Unconventional Superconductivity in the Hole-Doped Rashba-Hubbard Model.
    Greco A; Schnyder AP
    Phys Rev Lett; 2018 Apr; 120(17):177002. PubMed ID: 29756818
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Strong coupling superconductivity, pseudogap, and Mott transition.
    Sordi G; Sémon P; Haule K; Tremblay AM
    Phys Rev Lett; 2012 May; 108(21):216401. PubMed ID: 23003285
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Superconducting phase and pairing fluctuations in the half-filled two-dimensional Hubbard model.
    Sentef M; Werner P; Gull E; Kampf AP
    Phys Rev Lett; 2011 Sep; 107(12):126401. PubMed ID: 22026778
    [TBL] [Abstract][Full Text] [Related]  

  • 5. d-wave superconductivity in the hubbard model.
    Maier T; Jarrell M; Pruschke T; Keller J
    Phys Rev Lett; 2000 Aug; 85(7):1524-7. PubMed ID: 10970545
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Superconductivity in the doped Hubbard model and its interplay with next-nearest hopping
    Jiang HC; Devereaux TP
    Science; 2019 Sep; 365(6460):1424-1428. PubMed ID: 31604270
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Unconventional superconductivity in generalized Hubbard model: role of electron-hole symmetry breaking terms.
    Wysokiński MM; Kaczmarczyk J
    J Phys Condens Matter; 2017 Mar; 29(8):085604. PubMed ID: 28092633
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Chiral Spin Density Wave and d+id Superconductivity in the Magic-Angle-Twisted Bilayer Graphene.
    Liu CC; Zhang LD; Chen WQ; Yang F
    Phys Rev Lett; 2018 Nov; 121(21):217001. PubMed ID: 30517799
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Dynamic cluster quantum Monte Carlo simulations of a two-dimensional Hubbard model with stripelike charge-density-wave modulations: interplay between inhomogeneities and the superconducting state.
    Maier TA; Alvarez G; Summers M; Schulthess TC
    Phys Rev Lett; 2010 Jun; 104(24):247001. PubMed ID: 20867327
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Spontaneous deformation of the fermi surface due to strong correlation in the two-dimensional t- J model.
    Himeda A; Ogata M
    Phys Rev Lett; 2000 Nov; 85(20):4345-8. PubMed ID: 11060634
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Coexistence of superconductivity with partially filled stripes in the Hubbard model.
    Xu H; Chung CM; Qin M; Schollwöck U; White SR; Zhang S
    Science; 2024 May; 384(6696):eadh7691. PubMed ID: 38723081
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Cold attractive spin polarized Fermi lattice gases and the doped positive U Hubbard model.
    Moreo A; Scalapino DJ
    Phys Rev Lett; 2007 May; 98(21):216402. PubMed ID: 17677791
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Quantum criticality and incipient phase separation in the thermodynamic properties of the Hubbard model.
    Galanakis D; Khatami E; Mikelsons K; Macridin A; Moreno J; Browne DA; Jarrell M
    Philos Trans A Math Phys Eng Sci; 2011 Apr; 369(1941):1670-86. PubMed ID: 21422020
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Optimizing Superconductivity: From Cuprates via Nickelates to Palladates.
    Kitatani M; Si L; Worm P; Tomczak JM; Arita R; Held K
    Phys Rev Lett; 2023 Apr; 130(16):166002. PubMed ID: 37154662
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Systematic study of d-wave superconductivity in the 2D repulsive Hubbard model.
    Maier TA; Jarrell M; Schulthess TC; Kent PR; White JB
    Phys Rev Lett; 2005 Dec; 95(23):237001. PubMed ID: 16384330
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Monte Carlo study of an unconventional superconducting phase in iridium oxide J(eff)=1/2 Mott insulators induced by carrier doping.
    Watanabe H; Shirakawa T; Yunoki S
    Phys Rev Lett; 2013 Jan; 110(2):027002. PubMed ID: 23383933
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Observation of spatial charge and spin correlations in the 2D Fermi-Hubbard model.
    Cheuk LW; Nichols MA; Lawrence KR; Okan M; Zhang H; Khatami E; Trivedi N; Paiva T; Rigol M; Zwierlein MW
    Science; 2016 Sep; 353(6305):1260-4. PubMed ID: 27634529
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Van Hove singularity driven enhancement of superconductivity in two-dimensional tungsten monofluoride (WF).
    Jamwal P; Ahuja R; Kumar R
    J Phys Condens Matter; 2024 Mar; 36(24):. PubMed ID: 38411011
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Stripe states with spatially oscillating d-wave superconductivity in the two-dimensional t-t'-J model.
    Himeda A; Kato T; Ogata M
    Phys Rev Lett; 2002 Mar; 88(11):117001. PubMed ID: 11909421
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Dimensional-crossover-driven Mott transition in the frustrated Hubbard model.
    Raczkowski M; Assaad FF
    Phys Rev Lett; 2012 Sep; 109(12):126404. PubMed ID: 23005966
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 20.