These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

129 related articles for article (PubMed ID: 26406878)

  • 21. Degradation of phenol and TCE using suspended and chitosan-bead immobilized Pseudomonas putida.
    Chen YM; Lin TF; Huang C; Lin JC; Hsieh FM
    J Hazard Mater; 2007 Sep; 148(3):660-70. PubMed ID: 17434262
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Biodegradation and adsorption of phenol using activated carbon immobilized with Pseudomonas putida.
    Annadurai G; Juang RS; Lee DJ
    J Environ Sci Health A Tox Hazard Subst Environ Eng; 2002; 37(6):1133-46. PubMed ID: 12090285
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Growth kinetics of an indigenous mixed microbial consortium during phenol degradation in a batch reactor.
    Saravanan P; Pakshirajan K; Saha P
    Bioresour Technol; 2008 Jan; 99(1):205-9. PubMed ID: 17236761
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Anaerobic phenol biodegradation: kinetic study and microbial community shifts under high-concentration dynamic loading.
    Mosca Angelucci D; Clagnan E; Brusetti L; Tomei MC
    Appl Microbiol Biotechnol; 2020 Aug; 104(15):6825-6838. PubMed ID: 32488314
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Degradation of ethyl mercaptan and its major intermediate diethyl disulfide by Pseudomonas sp. strain WL2.
    Wang X; Wu C; Liu N; Li S; Li W; Chen J; Chen D
    Appl Microbiol Biotechnol; 2015 Apr; 99(7):3211-20. PubMed ID: 25398287
    [TBL] [Abstract][Full Text] [Related]  

  • 26. The use of silica gel prepared by sol-gel method and polyurethane foam as microbial carriers in the continuous degradation of phenol.
    Brányik T; Kuncová G; Páca J
    Appl Microbiol Biotechnol; 2000 Aug; 54(2):168-72. PubMed ID: 10968628
    [TBL] [Abstract][Full Text] [Related]  

  • 27. IAL-CHS (internal airlift loop--ceramic honeycomb supports) reactor used for biodegradation of 2,4-dichlorophenol and phenol.
    Zhang Y; Quan X; Rittmann BE; Wang J; Shi H; Qian Y; Yu J
    Water Sci Technol; 2004; 49(11-12):247-54. PubMed ID: 15303748
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Degradation of phenol by Rhodococcus erythropolis UPV-1 immobilized on Biolite in a packed-bed reactor.
    Begoña Prieto M; Hidalgo A; Serra JL; Llama MJ
    J Biotechnol; 2002 Jul; 97(1):1-11. PubMed ID: 12052678
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Biodegradation of phenol in a continuous process: comparative study of stirred tank and fluidized-bed bioreactors.
    González G; Herrera MG; García MT; Peña MM
    Bioresour Technol; 2001 Feb; 76(3):245-51. PubMed ID: 11198177
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Immobilized white-rot fungal biodegradation of phenol and chlorinated phenol in trickling packed-bed reactors by employing sequencing batch operation.
    Ehlers GA; Rose PD
    Bioresour Technol; 2005 Jul; 96(11):1264-75. PubMed ID: 15734314
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Biodegradation of high phenol containing synthetic wastewater by an aerobic fixed bed reactor.
    Bajaj M; Gallert C; Winter J
    Bioresour Technol; 2008 Nov; 99(17):8376-81. PubMed ID: 18440804
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Phenol degradation in horizontal-flow anaerobic immobilized biomass (HAIB) reactor under mesophilic conditions.
    Bolaños RM; Varesche MB; Zaiat M; Foresti E
    Water Sci Technol; 2001; 44(4):167-74. PubMed ID: 11575081
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Kinetics of high strength phenol degradation using Bacillus brevis.
    Arutchelvan V; Kanakasabai V; Elangovan R; Nagarajan S; Muralikrishnan V
    J Hazard Mater; 2006 Feb; 129(1-3):216-22. PubMed ID: 16203081
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Upflow anaerobic sludge blanket reactor--a review.
    Bal AS; Dhagat NN
    Indian J Environ Health; 2001 Apr; 43(2):1-82. PubMed ID: 12397675
    [TBL] [Abstract][Full Text] [Related]  

  • 35. The effects of cyanobacterial exudates on bacterial growth and biodegradation of organic contaminants.
    Kirkwood AE; Nalewajko C; Fulthorpe RR
    Microb Ecol; 2006 Jan; 51(1):4-12. PubMed ID: 16382284
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Intensified phenol and p-cresol biodegradation for wastewater treatment in countercurrent packed-bed column bioreactors.
    Iliuta I; Iliuta MC
    Chemosphere; 2022 Jan; 286(Pt 2):131716. PubMed ID: 34343917
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Experimental and kinetic study on the cometabolic biodegradation of phenol and 4-chlorophenol by psychrotrophic Pseudomonas putida LY1.
    Wang Q; Li Y; Li J; Wang Y; Wang C; Wang P
    Environ Sci Pollut Res Int; 2015 Jan; 22(1):565-73. PubMed ID: 25091164
    [TBL] [Abstract][Full Text] [Related]  

  • 38. A calorimetrically based method to convert toxic compounds into poly-3-hydroxybutyrate and to determine the efficiency and velocity of conversion.
    Maskow T; Babel W
    Appl Microbiol Biotechnol; 2001 Mar; 55(2):234-8. PubMed ID: 11330720
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Aerobic pretreatment of olive oil mill wastewater using Ralstonia eutropha.
    Jalilnejad E; Mogharei A; Vahabzadeh F
    Environ Technol; 2011 Jul; 32(9-10):1085-93. PubMed ID: 21882561
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Isolation and selection of phenol-degrading microorganisms from industrial wastewaters and kinetics of the biodegradation.
    Rigo M; Alegre RM
    Folia Microbiol (Praha); 2004; 49(1):41-5. PubMed ID: 15114864
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.