These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
139 related articles for article (PubMed ID: 26406919)
1. Highly Substituted Cyclopentane-CMP Conjugates as Potent Sialyltransferase Inhibitors. Li W; Niu Y; Xiong DC; Cao X; Ye XS J Med Chem; 2015 Oct; 58(20):7972-90. PubMed ID: 26406919 [TBL] [Abstract][Full Text] [Related]
2. Synthesis of bisubstrate and donor analogues of sialyltransferase and their inhibitory activities. Izumi M; Wada K; Yuasa H; Hashimoto H J Org Chem; 2005 Oct; 70(22):8817-24. PubMed ID: 16238314 [TBL] [Abstract][Full Text] [Related]
3. Computational characterisation of the interactions between human ST6Gal I and transition-state analogue inhibitors: insights for inhibitor design. Montgomery A; Szabo R; Skropeta D; Yu H J Mol Recognit; 2016 May; 29(5):210-22. PubMed ID: 26669681 [TBL] [Abstract][Full Text] [Related]
4. Sialyltransferase inhibition and recent advances. Wang L; Liu Y; Wu L; Sun XL Biochim Biophys Acta; 2016 Jan; 1864(1):143-53. PubMed ID: 26192491 [TBL] [Abstract][Full Text] [Related]
5. New sialyltransferase inhibitors based on CMP-quinic acid: development of a new sialyltransferase assay. Schaub C; Müller B; Schmidt RR Glycoconj J; 1998 Apr; 15(4):345-54. PubMed ID: 9613821 [TBL] [Abstract][Full Text] [Related]
6. Asymmetric synthesis and affinity of potent sialyltransferase inhibitors based on transition-state analogues. Skropeta D; Schwörer R; Haag T; Schmidt RR Glycoconj J; 2004; 21(5):205-19. PubMed ID: 15486453 [TBL] [Abstract][Full Text] [Related]
7. Synthesis of α-Hydroxy-1,2,3-Triazole-linked Sialyltransferase Inhibitors and Evaluation of Selectivity Towards ST3GAL1, ST6GAL1 and ST8SIA2. Szabo R; Dobie C; Montgomery AP; Steele H; Yu H; Skropeta D ChemMedChem; 2024 Aug; 19(16):e202400088. PubMed ID: 38758134 [TBL] [Abstract][Full Text] [Related]
8. Ecto-sialyltransferase of human B lymphocytes reconstitutes differentiation markers in the presence of exogenous CMP-N-acetyl neuraminic acid. Gross HJ; Merling A; Moldenhauer G; Schwartz-Albiez R Blood; 1996 Jun; 87(12):5113-26. PubMed ID: 8652824 [TBL] [Abstract][Full Text] [Related]
9. Design, synthesis and evaluation of carbamate-linked uridyl-based inhibitors of human ST6Gal I. Montgomery AP; Dobie C; Szabo R; Hallam L; Ranson M; Yu H; Skropeta D Bioorg Med Chem; 2020 Jul; 28(14):115561. PubMed ID: 32616185 [TBL] [Abstract][Full Text] [Related]
10. Unliganded and CMP-Neu5Ac bound structures of human α-2,6-sialyltransferase ST6Gal I at high resolution. Harrus D; Harduin-Lepers A; Glumoff T J Struct Biol; 2020 Nov; 212(2):107628. PubMed ID: 32971290 [TBL] [Abstract][Full Text] [Related]
11. Reversible sialylation: synthesis of cytidine 5'-monophospho-N-acetylneuraminic acid from cytidine 5'-monophosphate with alpha2,3-sialyl O-glycan-, glycolipid-, and macromolecule-based donors yields diverse sialylated products. Chandrasekaran EV; Xue J; Xia J; Locke RD; Matta KL; Neelamegham S Biochemistry; 2008 Jan; 47(1):320-30. PubMed ID: 18067323 [TBL] [Abstract][Full Text] [Related]
12. Enhanced Bacterial α(2,6)-Sialyltransferase Reaction through an Inhibition of Its Inherent Sialidase Activity by Dephosphorylation of Cytidine-5'-Monophosphate. Kang JY; Lim SJ; Kwon O; Lee SG; Kim HH; Oh DB PLoS One; 2015; 10(7):e0133739. PubMed ID: 26231036 [TBL] [Abstract][Full Text] [Related]
13. Conformational and electrostatic analysis of S Crous W; Naidoo KJ Bioorg Med Chem; 2016 Oct; 24(20):4998-5005. PubMed ID: 27614914 [TBL] [Abstract][Full Text] [Related]
14. Studies on the inhibition of sialyl- and galactosyltransferases. Kleineidam RG; Schmelter T; Schwarz RT; Schauer R Glycoconj J; 1997 Jan; 14(1):57-66. PubMed ID: 9076514 [TBL] [Abstract][Full Text] [Related]
15. Potential sialyltransferase inhibitors based on neuraminyl substitution by hetaryl rings. Mathew B; Schmidt RR Carbohydr Res; 2007 Feb; 342(3-4):558-66. PubMed ID: 16989791 [TBL] [Abstract][Full Text] [Related]
16. Synthesis and evaluation of phosphoramidate amino acid-based inhibitors of sialyltransferases. Whalen LJ; McEvoy KA; Halcomb RL Bioorg Med Chem Lett; 2003 Jan; 13(2):301-4. PubMed ID: 12482445 [TBL] [Abstract][Full Text] [Related]
17. Identification and characterization of flavonoids as sialyltransferase inhibitors. Hidari KI; Oyama K; Ito G; Nakayama M; Inai M; Goto S; Kanai Y; Watanabe K; Yoshida K; Furuta T; Kan T; Suzuki T Biochem Biophys Res Commun; 2009 May; 382(3):609-13. PubMed ID: 19303395 [TBL] [Abstract][Full Text] [Related]
18. Recent development in the design of sialyltransferase inhibitors. Wang X; Zhang LH; Ye XS Med Res Rev; 2003 Jan; 23(1):32-47. PubMed ID: 12424752 [TBL] [Abstract][Full Text] [Related]
19. Systematic syntheses and inhibitory activities of bisubstrate-type inhibitors of sialyltransferases. Hinou H; Sun XL; Ito Y J Org Chem; 2003 Jul; 68(14):5602-13. PubMed ID: 12839452 [TBL] [Abstract][Full Text] [Related]
20. Synthesis of CMP-9''-modified-sialic acids as donor substrate analogues for mammalian and bacterial sialyltransferases. Kajihara Y; Kamitani T; Sato R; Kamei N; Miyazaki T; Okamoto R; Sakakibara T; Tsuji T; Yamamoto T Carbohydr Res; 2007 Sep; 342(12-13):1680-8. PubMed ID: 17572399 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]