These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
6. Differences in proton-coupled electron-transfer reactions of flavin mononucleotide (FMN) and flavin adenine dinucleotide (FAD) between buffered and unbuffered aqueous solutions. Tan SL; Kan JM; Webster RD J Phys Chem B; 2013 Nov; 117(44):13755-66. PubMed ID: 24079606 [TBL] [Abstract][Full Text] [Related]
7. A bifunctional molecule as an artificial flavin mononucleotide cyclase and a chemosensor for selective fluorescent detection of flavins. Rhee HW; Choi SJ; Yoo SH; Jang YO; Park HH; Pinto RM; Cameselle JC; Sandoval FJ; Roje S; Han K; Chung DS; Suh J; Hong JI J Am Chem Soc; 2009 Jul; 131(29):10107-12. PubMed ID: 19569646 [TBL] [Abstract][Full Text] [Related]
8. [Chemical and functional properties of flavin coenzymes]. Setoyama C; Miura R Nihon Rinsho; 1999 Oct; 57(10):2193-8. PubMed ID: 10540861 [TBL] [Abstract][Full Text] [Related]
9. Single Entity Electrochemistry in Nanopore Electrode Arrays: Ion Transport Meets Electron Transfer in Confined Geometries. Fu K; Kwon SR; Han D; Bohn PW Acc Chem Res; 2020 Apr; 53(4):719-728. PubMed ID: 31990518 [TBL] [Abstract][Full Text] [Related]
10. DNA-Guided Delivery of Single Molecules into Zero-Mode Waveguides. Plénat T; Yoshizawa S; Fourmy D ACS Appl Mater Interfaces; 2017 Sep; 9(36):30561-30566. PubMed ID: 28825461 [TBL] [Abstract][Full Text] [Related]
11. Ultrafast 2D-IR spectroelectrochemistry of flavin mononucleotide. El Khoury Y; Van Wilderen LJ; Bredenbeck J J Chem Phys; 2015 Jun; 142(21):212416. PubMed ID: 26049436 [TBL] [Abstract][Full Text] [Related]
12. Zero-mode waveguides: sub-wavelength nanostructures for single molecule studies at high concentrations. Moran-Mirabal JM; Craighead HG Methods; 2008 Sep; 46(1):11-7. PubMed ID: 18586103 [TBL] [Abstract][Full Text] [Related]
14. Zero-Mode Waveguide Nanophotonic Structures for Single Molecule Characterization. Crouch GM; Han D; Bohn PW J Phys D Appl Phys; 2018 May; 51(19):193001. PubMed ID: 34158676 [TBL] [Abstract][Full Text] [Related]
15. Control of oxidation-reduction potentials in flavodoxin from Clostridium beijerinckii: the role of conformation changes. Ludwig ML; Pattridge KA; Metzger AL; Dixon MM; Eren M; Feng Y; Swenson RP Biochemistry; 1997 Feb; 36(6):1259-80. PubMed ID: 9063874 [TBL] [Abstract][Full Text] [Related]
16. Bioluminophore and Flavin Mononucleotide Fluorescence Quenching of Bacterial Bioluminescence-A Theoretical Study. Luo Y; Liu YJ Chemistry; 2016 Nov; 22(45):16243-16249. PubMed ID: 27665749 [TBL] [Abstract][Full Text] [Related]
17. Synthesis and redox behavior of flavin mononucleotide-functionalized single-walled carbon nanotubes. Ju SY; Papadimitrakopoulos F J Am Chem Soc; 2008 Jan; 130(2):655-64. PubMed ID: 18081284 [TBL] [Abstract][Full Text] [Related]
18. Binding of the oxidized, reduced, and radical flavin species to chorismate synthase. An investigation by spectrophotometry, fluorimetry, and electron paramagnetic resonance and electron nuclear double resonance spectroscopy. Macheroux P; Petersen J; Bornemann S; Lowe DJ; Thorneley RN Biochemistry; 1996 Feb; 35(5):1643-52. PubMed ID: 8634296 [TBL] [Abstract][Full Text] [Related]
19. Potentiometric and further kinetic characterization of the flavin-binding domain of Saccharomyces cerevisiae flavocytochrome b2. Inhibition by anions binding in the active site. Cénas N; Lê KH; Terrier M; Lederer F Biochemistry; 2007 Apr; 46(15):4661-70. PubMed ID: 17373777 [TBL] [Abstract][Full Text] [Related]
20. Role of neighboring FMN side chains in the modulation of flavin reduction potentials and in the energetics of the FMN:apoprotein interaction in Anabaena flavodoxin. Nogués I; Campos LA; Sancho J; Gómez-Moreno C; Mayhew SG; Medina M Biochemistry; 2004 Dec; 43(48):15111-21. PubMed ID: 15568803 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]