These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
86 related articles for article (PubMed ID: 26406928)
1. Scaffolds for Artificial miRNA Expression in Animal Cells. Calloni R; Bonatto D Hum Gene Ther Methods; 2015 Oct; 26(5):162-74. PubMed ID: 26406928 [TBL] [Abstract][Full Text] [Related]
2. Enzymatic preparation of an artificial microRNA library. Xue L; Yuan Q; Yang Y; Wu J Biochem Biophys Res Commun; 2009 Dec; 390(3):791-6. PubMed ID: 19836357 [TBL] [Abstract][Full Text] [Related]
3. Artificial miRNAs as therapeutic tools: Challenges and opportunities. Kotowska-Zimmer A; Pewinska M; Olejniczak M Wiley Interdiscip Rev RNA; 2021 Jul; 12(4):e1640. PubMed ID: 33386705 [TBL] [Abstract][Full Text] [Related]
4. A high-efficiency gene silencing in plants using two-hit asymmetrical artificial MicroRNAs. Teotia S; Wang X; Zhou N; Wang M; Liu H; Qin J; Han D; Li C; Li CE; Pan S; Tang H; Kang W; Zhang Z; Tang X; Peng T; Tang G Plant Biotechnol J; 2023 Sep; 21(9):1799-1811. PubMed ID: 37392408 [TBL] [Abstract][Full Text] [Related]
5. Efficient silencing of endogenous microRNAs using artificial microRNAs in Arabidopsis thaliana. Eamens AL; Agius C; Smith NA; Waterhouse PM; Wang MB Mol Plant; 2011 Jan; 4(1):157-70. PubMed ID: 20943811 [TBL] [Abstract][Full Text] [Related]
6. Vectors and methods for hairpin RNA and artificial microRNA-mediated gene silencing in plants. Eamens AL; Waterhouse PM Methods Mol Biol; 2011; 701():179-97. PubMed ID: 21181531 [TBL] [Abstract][Full Text] [Related]
7. Goat activin receptor type IIB knockdown by artificial microRNAs in vitro. Patel AK; Shah RK; Parikh IK; Joshi CG Appl Biochem Biotechnol; 2014 Sep; 174(1):424-36. PubMed ID: 25080379 [TBL] [Abstract][Full Text] [Related]
13. Design of lentivirally expressed siRNAs. Liu YP; Berkhout B Methods Mol Biol; 2013; 942():233-57. PubMed ID: 23027055 [TBL] [Abstract][Full Text] [Related]
14. Customization of Artificial MicroRNA Design. Van Vu T; Do VN Methods Mol Biol; 2017; 1509():235-243. PubMed ID: 27826932 [TBL] [Abstract][Full Text] [Related]
15. Artificial microRNAs for plant virus resistance. Qu J; Ye J; Fang R Methods Mol Biol; 2012; 894():209-22. PubMed ID: 22678582 [TBL] [Abstract][Full Text] [Related]
16. pSM155 and pSM30 vectors for miRNA and shRNA expression. Wu J; Bonsra AN; Du G Methods Mol Biol; 2009; 487():205-19. PubMed ID: 19301649 [TBL] [Abstract][Full Text] [Related]
17. Artificial microRNA mediated gene silencing in plants: progress and perspectives. Tiwari M; Sharma D; Trivedi PK Plant Mol Biol; 2014 Sep; 86(1-2):1-18. PubMed ID: 25022825 [TBL] [Abstract][Full Text] [Related]
18. Highly specific gene silencing by artificial miRNAs in rice. Warthmann N; Chen H; Ossowski S; Weigel D; Hervé P PLoS One; 2008 Mar; 3(3):e1829. PubMed ID: 18350165 [TBL] [Abstract][Full Text] [Related]
19. Design, Construction, and Validation of Artificial MicroRNA Vectors Using Agrobacterium-Mediated Transient Expression System. Bhagwat B; Chi M; Han D; Tang H; Tang G; Xiang Y Methods Mol Biol; 2016; 1405():149-62. PubMed ID: 26843173 [TBL] [Abstract][Full Text] [Related]
20. Assessment of Artificial MiRNA Architectures for Higher Knockdown Efficiencies without the Undesired Effects in Mice. Miura H; Inoko H; Tanaka M; Nakaoka H; Kimura M; Gurumurthy CB; Sato M; Ohtsuka M PLoS One; 2015; 10(8):e0135919. PubMed ID: 26285215 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]