BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

90 related articles for article (PubMed ID: 26406928)

  • 21. Expression of artificial microRNAs in Physcomitrella patens.
    Fattash I; Khraiwesh B; Arif MA; Frank W
    Methods Mol Biol; 2012; 847():293-315. PubMed ID: 22351018
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Highly efficient virus resistance mediated by artificial microRNAs that target the suppressor of PVX and PVY in plants.
    Ai T; Zhang L; Gao Z; Zhu CX; Guo X
    Plant Biol (Stuttg); 2011 Mar; 13(2):304-16. PubMed ID: 21309977
    [TBL] [Abstract][Full Text] [Related]  

  • 23. An in vivo transient expression system can be applied for rapid and effective selection of artificial microRNA constructs for plant stable genetic transformation.
    Bhagwat B; Chi M; Su L; Tang H; Tang G; Xiang Y
    J Genet Genomics; 2013 May; 40(5):261-70. PubMed ID: 23706301
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Transgene-free, virus-based gene silencing in plants by artificial microRNAs derived from minimal precursors.
    Cisneros AE; Martín-García T; Primc A; Kuziuta W; Sánchez-Vicente J; Aragonés V; Daròs JA; Carbonell A
    Nucleic Acids Res; 2023 Oct; 51(19):10719-10736. PubMed ID: 37713607
    [TBL] [Abstract][Full Text] [Related]  

  • 25. P-SAMS: a web site for plant artificial microRNA and synthetic trans-acting small interfering RNA design.
    Fahlgren N; Hill ST; Carrington JC; Carbonell A
    Bioinformatics; 2016 Jan; 32(1):157-8. PubMed ID: 26382195
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Gene silencing efficiency and INF-β induction effects of splicing miRNA 155-based artificial miRNA with pre-miRNA stem-loop structures.
    Sin O; Mabiala P; Liu Y; Sun Y; Hu T; Liu Q; Guo D
    Biochem Genet; 2012 Feb; 50(1-2):112-21. PubMed ID: 22119863
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Highly efficient gene silencing using perfect complementary artificial miRNA targeting AP1 or heteromeric artificial miRNA targeting AP1 and CAL genes.
    Park W; Zhai J; Lee JY
    Plant Cell Rep; 2009 Mar; 28(3):469-80. PubMed ID: 19066901
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Reduction in carotenoid levels in the marine diatom Phaeodactylum tricornutum by artificial microRNAs targeted against the endogenous phytoene synthase gene.
    Kaur S; Spillane C
    Mar Biotechnol (NY); 2015 Feb; 17(1):1-7. PubMed ID: 25189134
    [TBL] [Abstract][Full Text] [Related]  

  • 29. miRNA and shRNA expression vectors based on mRNA and miRNA processing.
    Wu P; Wilmarth MA; Zhang F; Du G
    Methods Mol Biol; 2013; 936():195-207. PubMed ID: 23007510
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Targeting the production of oncogenic microRNAs with multimodal synthetic small molecules.
    Vo DD; Staedel C; Zehnacker L; Benhida R; Darfeuille F; Duca M
    ACS Chem Biol; 2014 Mar; 9(3):711-21. PubMed ID: 24359019
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Testing the efficiency of plant artificial microRNAs by transient expression in Nicotiana benthamiana reveals additional action at the translational level.
    Yu S; Pilot G
    Front Plant Sci; 2014; 5():622. PubMed ID: 25477887
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Designing effective amiRNA and multimeric amiRNA against plant viruses.
    Fahim M; Larkin PJ
    Methods Mol Biol; 2013; 942():357-77. PubMed ID: 23027061
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Epitope-tagged protein-based artificial miRNA screens for optimized gene silencing in plants.
    Li JF; Zhang D; Sheen J
    Nat Protoc; 2014 Apr; 9(4):939-49. PubMed ID: 24675734
    [TBL] [Abstract][Full Text] [Related]  

  • 34. The use of artificial microRNA technology to control gene expression in Arabidopsis thaliana.
    Eamens AL; McHale M; Waterhouse PM
    Methods Mol Biol; 2014; 1062():211-24. PubMed ID: 24057368
    [TBL] [Abstract][Full Text] [Related]  

  • 35. MicroRNAs with analogous target complementarities perform with highly variable efficacies in Arabidopsis.
    Deveson I; Li J; Millar AA
    FEBS Lett; 2013 Nov; 587(22):3703-8. PubMed ID: 24103298
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Gene silencing in plants using artificial microRNAs and other small RNAs.
    Ossowski S; Schwab R; Weigel D
    Plant J; 2008 Feb; 53(4):674-90. PubMed ID: 18269576
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Targeted delivery of miRNA therapeutics for cardiovascular diseases: opportunities and challenges.
    Kwekkeboom RF; Lei Z; Doevendans PA; Musters RJ; Sluijter JP
    Clin Sci (Lond); 2014 Sep; 127(6):351-65. PubMed ID: 24895056
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Small but mighty RNA-mediated interference in plants.
    Pattanayak D; Agarwal S; Sumathi S; Chakrabarti SK; Naik PS; Khurana SM
    Indian J Exp Biol; 2005 Jan; 43(1):7-24. PubMed ID: 15691061
    [TBL] [Abstract][Full Text] [Related]  

  • 39. [Construction and screening of the artificial miRNA plasmids targeting porcine Toll-like receptor 7 gene].
    Song H; Jiang C; Sun H
    Xi Bao Yu Fen Zi Mian Yi Xue Za Zhi; 2013 Jan; 29(1):18-21, 26. PubMed ID: 23294713
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Post-transcriptional gene silencing by siRNAs and miRNAs.
    Filipowicz W; Jaskiewicz L; Kolb FA; Pillai RS
    Curr Opin Struct Biol; 2005 Jun; 15(3):331-41. PubMed ID: 15925505
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 5.