BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

116 related articles for article (PubMed ID: 26407201)

  • 1. Time-dependent changes in dynamic mechanical properties of irradiated bone.
    Mardas M; Kubisz L; Biskupski P; Mielcarek S
    Biomed Mater Eng; 2015; 25(4):397-403. PubMed ID: 26407201
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Radiation sterilized bone response to dynamic loading.
    Mardas M; Kubisz L; Biskupski P; Mielcarek S; Stelmach-Mardas M; Kałuska I
    Mater Sci Eng C Mater Biol Appl; 2012 Aug; 32(6):1548-53. PubMed ID: 24364959
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Deep-Freezing Temperatures During Irradiation Preserves the Compressive Strength of Human Cortical Bone Allografts: A Cadaver Study.
    Yang Harmony TC; Yusof N; Ramalingam S; Baharin R; Syahrom A; Mansor A
    Clin Orthop Relat Res; 2022 Feb; 480(2):407-418. PubMed ID: 34491235
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Alterations in damage processes in dense cancellous bone following gamma-radiation sterilization.
    Dux SJ; Ramsey D; Chu EH; Rimnac CM; Hernandez CJ
    J Biomech; 2010 May; 43(8):1509-13. PubMed ID: 20172526
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effect of low dose and moderate dose gamma irradiation on the mechanical properties of bone and soft tissue allografts.
    Balsly CR; Cotter AT; Williams LA; Gaskins BD; Moore MA; Wolfinbarger L
    Cell Tissue Bank; 2008 Dec; 9(4):289-98. PubMed ID: 18431690
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Meniscal allograft sterilisation: effect on biomechanical and histological properties.
    Bui D; Lovric V; Oliver R; Bertollo N; Broe D; Walsh WR
    Cell Tissue Bank; 2015 Sep; 16(3):467-75. PubMed ID: 25589449
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Free radical scavenging alleviates the biomechanical impairment of gamma radiation sterilized bone tissue.
    Akkus O; Belaney RM; Das P
    J Orthop Res; 2005 Jul; 23(4):838-45. PubMed ID: 16022998
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effective use of optimized, high-dose (50 kGy) gamma irradiation for pathogen inactivation of human bone allografts.
    Grieb TA; Forng RY; Stafford RE; Lin J; Almeida J; Bogdansky S; Ronholdt C; Drohan WN; Burgess WH
    Biomaterials; 2005 May; 26(14):2033-42. PubMed ID: 15576177
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Bone embrittlement and collagen modifications due to high-dose gamma-irradiation sterilization.
    Burton B; Gaspar A; Josey D; Tupy J; Grynpas MD; Willett TL
    Bone; 2014 Apr; 61():71-81. PubMed ID: 24440514
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effect of high-energy X-ray irradiation on creep mechanisms in bone and dentin.
    Deymier-Black AC; Singhal A; Yuan F; Almer JD; Brinson LC; Dunand DC
    J Mech Behav Biomed Mater; 2013 May; 21():17-31. PubMed ID: 23454365
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effects of ionizing radiation on the mechanical properties of human bone.
    Currey JD; Foreman J; Laketić I; Mitchell J; Pegg DE; Reilly GC
    J Orthop Res; 1997 Jan; 15(1):111-7. PubMed ID: 9066534
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effect of ionizing radiation on the physicochemical and mechanical properties of commercial monolayer flexible plastics packaging materials.
    Goulas AE; Riganakos KA; Badeka A; Kontominas MG
    Food Addit Contam; 2002 Dec; 19(12):1190-9. PubMed ID: 12623680
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Quantifying the Effects of Formalin Fixation on the Mechanical Properties of Cortical Bone Using Beam Theory and Optimization Methodology With Specimen-Specific Finite Element Models.
    Zhang GJ; Yang J; Guan FJ; Chen D; Li N; Cao L; Mao H
    J Biomech Eng; 2016 Sep; 138(9):. PubMed ID: 27447849
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Gamma Radiation Sterilization Reduces the High-cycle Fatigue Life of Allograft Bone.
    Islam A; Chapin K; Moore E; Ford J; Rimnac C; Akkus O
    Clin Orthop Relat Res; 2016 Mar; 474(3):827-35. PubMed ID: 26463571
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Sterilization effects on the mechanical properties of human bone-patellar tendon-bone allografts.
    Reid J; Sikka R; Tsoi W; Narvy SJ; Hedman T; Lee TQ; Vangsness CT
    Orthopedics; 2010 Apr; 33(4):. PubMed ID: 20415299
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Variability and anisotropy of mechanical behavior of cortical bone in tension and compression.
    Li S; Demirci E; Silberschmidt VV
    J Mech Behav Biomed Mater; 2013 May; 21():109-20. PubMed ID: 23563047
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Mechanical properties of radiation-sterilised human Bone-Tendon-Bone grafts preserved by different methods.
    Kamiński A; Gut G; Marowska J; Lada-Kozłowska M; Biwejnis W; Zasacka M
    Cell Tissue Bank; 2009 Aug; 10(3):215-9. PubMed ID: 18982427
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Post-yield relaxation behavior of bovine cancellous bone.
    Burgers TA; Lakes RS; García-Rodríguez S; Piller GR; Ploeg HL
    J Biomech; 2009 Dec; 42(16):2728-33. PubMed ID: 19765712
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Soft-tissue allografts terminally sterilized with an electron beam are biomechanically equivalent to aseptic, nonsterilized tendons.
    Elenes EY; Hunter SA
    J Bone Joint Surg Am; 2014 Aug; 96(16):1321-6. PubMed ID: 25143491
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Novel method to analyze post-yield mechanical properties at trabecular bone tissue level.
    Carretta R; Luisier B; Bernoulli D; Stüssi E; Müller R; Lorenzetti S
    J Mech Behav Biomed Mater; 2013 Apr; 20():6-18. PubMed ID: 23455157
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.