BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

235 related articles for article (PubMed ID: 26407659)

  • 1. X-ray recordings reveal how a human disease-linked skeletal muscle α-actin mutation leads to contractile dysfunction.
    Ochala J; Ravenscroft G; McNamara E; Nowak KJ; Iwamoto H
    J Struct Biol; 2015 Dec; 192(3):331-335. PubMed ID: 26407659
    [TBL] [Abstract][Full Text] [Related]  

  • 2. X-ray diffraction evidence for the extensibility of actin and myosin filaments during muscle contraction.
    Wakabayashi K; Sugimoto Y; Tanaka H; Ueno Y; Takezawa Y; Amemiya Y
    Biophys J; 1994 Dec; 67(6):2422-35. PubMed ID: 7779179
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A myopathy-linked tropomyosin mutation severely alters thin filament conformational changes during activation.
    Ochala J; Iwamoto H; Larsson L; Yagi N
    Proc Natl Acad Sci U S A; 2010 May; 107(21):9807-12. PubMed ID: 20457903
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Tropomyosin movement is described by a quantitative high-resolution model of X-ray diffraction of contracting muscle.
    Koubassova NA; Bershitsky SY; Ferenczi MA; Narayanan T; Tsaturyan AK
    Eur Biophys J; 2017 May; 46(4):335-342. PubMed ID: 27640143
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Myopathy-causing Q147P TPM2 mutation shifts tropomyosin strands further towards the open position and increases the proportion of strong-binding cross-bridges during the ATPase cycle.
    Karpicheva OE; Simonyan AO; Kuleva NV; Redwood CS; Borovikov YS
    Biochim Biophys Acta; 2016 Mar; 1864(3):260-267. PubMed ID: 26708479
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A structural origin of latency relaxation in frog skeletal muscle.
    Yagi N
    Biophys J; 2007 Jan; 92(1):162-71. PubMed ID: 17028137
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Structural changes in actin-tropomyosin during muscle regulation: computer modelling of low-angle X-ray diffraction data.
    al-Khayat HA; Yagi N; Squire JM
    J Mol Biol; 1995 Oct; 252(5):611-32. PubMed ID: 7563078
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Molecular Mechanisms of the Deregulation of Muscle Contraction Induced by the R90P Mutation in Tpm3.12 and the Weakening of This Effect by BDM and W7.
    Borovikov YS; Andreeva DD; Avrova SV; Sirenko VV; Simonyan AO; Redwood CS; Karpicheva OE
    Int J Mol Sci; 2021 Jun; 22(12):. PubMed ID: 34204776
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Hybrid and non-hybrid actomyosins reconstituted with actin, myosin and tropomyosin from skeletal and catch muscles.
    Shelud'ko NS; Vyatchin IG; Lazarev SS; Shevchenko UV
    Biochem Biophys Res Commun; 2015 Aug; 464(2):611-5. PubMed ID: 26166820
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The Closed State of the Thin Filament Is Not Occupied in Fully Activated Skeletal Muscle.
    Bershitsky SY; Koubassova NA; Ferenczi MA; Kopylova GV; Narayanan T; Tsaturyan AK
    Biophys J; 2017 Apr; 112(7):1455-1461. PubMed ID: 28402887
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Nemaline myopathy-related skeletal muscle α-actin (ACTA1) mutation, Asp286Gly, prevents proper strong myosin binding and triggers muscle weakness.
    Ochala J; Ravenscroft G; Laing NG; Nowak KJ
    PLoS One; 2012; 7(9):e45923. PubMed ID: 23029319
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Regulation of contraction in striated muscle.
    Gordon AM; Homsher E; Regnier M
    Physiol Rev; 2000 Apr; 80(2):853-924. PubMed ID: 10747208
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Skeletal and cardiac α-actin isoforms differently modulate myosin cross-bridge formation and myofibre force production.
    Ochala J; Iwamoto H; Ravenscroft G; Laing NG; Nowak KJ
    Hum Mol Genet; 2013 Nov; 22(21):4398-404. PubMed ID: 23784376
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Hypothesis: Single Actomyosin Properties Account for Ensemble Behavior in Active Muscle Shortening and Isometric Contraction.
    Månsson A
    Int J Mol Sci; 2020 Nov; 21(21):. PubMed ID: 33182367
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Crossbridge and tropomyosin positions observed in native, interacting thick and thin filaments.
    Craig R; Lehman W
    J Mol Biol; 2001 Aug; 311(5):1027-36. PubMed ID: 11531337
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Disrupted myosin cross-bridge cycling kinetics triggers muscle weakness in nebulin-related myopathy.
    Ochala J; Lehtokari VL; Iwamoto H; Li M; Feng HZ; Jin JP; Yagi N; Wallgren-Pettersson C; Pénisson-Besnier I; Larsson L
    FASEB J; 2011 Jun; 25(6):1903-13. PubMed ID: 21350120
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A myopathy-related actin mutation increases contractile function.
    Lindqvist J; Pénisson-Besnier I; Iwamoto H; Li M; Yagi N; Ochala J
    Acta Neuropathol; 2012 May; 123(5):739-46. PubMed ID: 22358459
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Study of regulatory effect of tropomyosin on actin-myosin interaction in skeletal muscle by in vitro motility assay.
    Kopylova GV; Shchepkin DV; Nikitina LV
    Biochemistry (Mosc); 2013 Mar; 78(3):260-6. PubMed ID: 23586719
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Structural changes in the thin filament during activation studied by X-ray diffraction of highly stretched skeletal muscle.
    Yagi N; Matsubara I
    J Mol Biol; 1989 Jul; 208(2):359-63. PubMed ID: 2769764
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The position of tropomyosin in muscle thin filaments.
    Seymour J; O'Brien EJ
    Nature; 1980 Feb; 283(5748):680-2. PubMed ID: 6892575
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.