BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

43 related articles for article (PubMed ID: 26407868)

  • 1. Membrane gene ontology bias in sequencing and microarray obtained by housekeeping-gene analysis.
    Zhang Y; Akintola OS; Liu KJA; Sun B
    Gene; 2016 Jan; 575(2 Pt 2):559-566. PubMed ID: 26407868
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Cross-platform transcriptomic profiling of the response to recombinant human erythropoietin.
    Wang G; Kitaoka T; Crawford A; Mao Q; Hesketh A; Guppy FM; Ash GI; Liu J; Gerstein MB; Pitsiladis YP
    Sci Rep; 2021 Nov; 11(1):21705. PubMed ID: 34737331
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A semi-parametric statistical model for integrating gene expression profiles across different platforms.
    Lyu Y; Li Q
    BMC Bioinformatics; 2016 Jan; 17 Suppl 1(Suppl 1):5. PubMed ID: 26818110
    [TBL] [Abstract][Full Text] [Related]  

  • 4. HRT Atlas v1.0 database: redefining human and mouse housekeeping genes and candidate reference transcripts by mining massive RNA-seq datasets.
    Hounkpe BW; Chenou F; de Lima F; De Paula EV
    Nucleic Acids Res; 2021 Jan; 49(D1):D947-D955. PubMed ID: 32663312
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Do housekeeping genes exist?
    Zhang Y; Li D; Sun B
    PLoS One; 2015; 10(5):e0123691. PubMed ID: 25970694
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Housekeeping protein-coding genes interrogated with tissue and individual variations.
    Tung KF; Pan CY; Lin WC
    Sci Rep; 2024 May; 14(1):12454. PubMed ID: 38816574
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Targeted exploration and analysis of large cross-platform human transcriptomic compendia.
    Zhu Q; Wong AK; Krishnan A; Aure MR; Tadych A; Zhang R; Corney DC; Greene CS; Bongo LA; Kristensen VN; Charikar M; Li K; Troyanskaya OG
    Nat Methods; 2015 Mar; 12(3):211-4, 3 p following 214. PubMed ID: 25581801
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Post hoc survival analyses using RNAseq data: handle with care.
    Suresh K; Psoter KJ
    Am J Physiol Lung Cell Mol Physiol; 2023 Jan; 324(1):L1-L4. PubMed ID: 36410024
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Dynamics in Transcriptomics: Advancements in RNA-seq Time Course and Downstream Analysis.
    Spies D; Ciaudo C
    Comput Struct Biotechnol J; 2015; 13():469-77. PubMed ID: 26430493
    [TBL] [Abstract][Full Text] [Related]  

  • 10. CircNet: a database of circular RNAs derived from transcriptome sequencing data.
    Liu YC; Li JR; Sun CH; Andrews E; Chao RF; Lin FM; Weng SL; Hsu SD; Huang CC; Cheng C; Liu CC; Huang HD
    Nucleic Acids Res; 2016 Jan; 44(D1):D209-15. PubMed ID: 26450965
    [TBL] [Abstract][Full Text] [Related]  

  • 11. dbHT-Trans: An Efficient Tool for Filtering the Protein-Encoding Transcripts Assembled by RNA-Seq According to Search for Homologous Proteins.
    Deng F; Chen SY
    J Comput Biol; 2016 Jan; 23(1):1-9. PubMed ID: 26484655
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Dynamic association rules for gene expression data analysis.
    Chen SC; Tsai TH; Chung CH; Li WH
    BMC Genomics; 2015 Oct; 16():786. PubMed ID: 26467206
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Modeling Exon-Specific Bias Distribution Improves the Analysis of RNA-Seq Data.
    Liu X; Zhang L; Chen S
    PLoS One; 2015; 10(10):e0140032. PubMed ID: 26448625
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Digenic inheritance of human primary microcephaly delineates centrosomal and non-centrosomal pathways.
    Duerinckx S; Jacquemin V; Drunat S; Vial Y; Passemard S; Perazzolo C; Massart A; Soblet J; Racapé J; Desmyter L; Badoer C; Papadimitriou S; Le Borgne YA; Lefort A; Libert F; De Maertelaer V; Rooman M; Costagliola S; Verloes A; Lenaerts T; Pirson I; Abramowicz M
    Hum Mutat; 2020 Feb; 41(2):512-524. PubMed ID: 31696992
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Reference quantitative transcriptome dataset for adult
    Piovesan A; Antonaros F; Strippoli P; Vitale L; Pelleri MC; Caracausi M
    Data Brief; 2019 Aug; 25():104152. PubMed ID: 31440537
    [No Abstract]   [Full Text] [Related]  

  • 16. Defining housekeeping genes suitable for RNA-seq analysis of the human allograft kidney biopsy tissue.
    Wang Z; Lyu Z; Pan L; Zeng G; Randhawa P
    BMC Med Genomics; 2019 Jun; 12(1):86. PubMed ID: 31208411
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Systematic identification of human housekeeping genes possibly useful as references in gene expression studies.
    Caracausi M; Piovesan A; Antonaros F; Strippoli P; Vitale L; Pelleri MC
    Mol Med Rep; 2017 Sep; 16(3):2397-2410. PubMed ID: 28713914
    [TBL] [Abstract][Full Text] [Related]  

  • 18. RNA sequencing and transcriptome arrays analyses show opposing results for alternative splicing in patient derived samples.
    Nazarov PV; Muller A; Kaoma T; Nicot N; Maximo C; Birembaut P; Tran NL; Dittmar G; Vallar L
    BMC Genomics; 2017 Jun; 18(1):443. PubMed ID: 28587590
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Strand-specific RNA-Seq transcriptome analysis of genotypes with and without low-phosphorus tolerance provides novel insights into phosphorus-use efficiency in maize.
    Du Q; Wang K; Xu C; Zou C; Xie C; Xu Y; Li WX
    BMC Plant Biol; 2016 Oct; 16(1):222. PubMed ID: 27724863
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Detection bias in microarray and sequencing transcriptomic analysis identified by housekeeping genes.
    Zhang Y; Akintola OS; Liu KJ; Sun B
    Data Brief; 2016 Mar; 6():121-3. PubMed ID: 26858976
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 3.