These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

187 related articles for article (PubMed ID: 26407888)

  • 1. Biodegradation of the organic disulfide 4,4'-dithiodibutyric acid by Rhodococcus spp.
    Khairy H; Wübbeler JH; Steinbüchel A
    Appl Environ Microbiol; 2015 Dec; 81(24):8294-306. PubMed ID: 26407888
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The NADH:flavin oxidoreductase Nox from Rhodococcus erythropolis MI2 is the key enzyme of 4,4'-dithiodibutyric acid degradation.
    Khairy H; Wübbeler JH; Steinbüchel A
    Lett Appl Microbiol; 2016 Dec; 63(6):434-441. PubMed ID: 27564089
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Genome and Proteome Analysis of Rhodococcus erythropolis MI2: Elucidation of the 4,4´-Dithiodibutyric Acid Catabolism.
    Khairy H; Meinert C; Wübbeler JH; Poehlein A; Daniel R; Voigt B; Riedel K; Steinbüchel A
    PLoS One; 2016; 11(12):e0167539. PubMed ID: 27977722
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Biodegradation of the xenobiotic organic disulphide 4,4'-dithiodibutyric acid by Rhodococcus erythropolis strain MI2 and comparison with the microbial utilization of 3,3'-dithiodipropionic acid and 3,3'-thiodipropionic acid.
    Wübbeler JH; Bruland N; Wozniczka M; Steinbüchel A
    Microbiology (Reading); 2010 Apr; 156(Pt 4):1221-1233. PubMed ID: 19959574
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Construction of random transposition mutagenesis system in Rhodococcuserythropolis using IS1415.
    Sallam KI; Mitani Y; Tamura T
    J Biotechnol; 2006 Jan; 121(1):13-22. PubMed ID: 16107286
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Purification, characterization, and overexpression of flavin reductase involved in dibenzothiophene desulfurization by Rhodococcus erythropolis D-1.
    Matsubara T; Ohshiro T; Nishina Y; Izumi Y
    Appl Environ Microbiol; 2001 Mar; 67(3):1179-84. PubMed ID: 11229908
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Starvation/stationary-phase survival of Rhodococcus erythropolis SQ1: a physiological and genetic analysis.
    Fanget NV; Foley S
    Arch Microbiol; 2011 Jan; 193(1):1-13. PubMed ID: 20967536
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The cbs mutant strain of Rhodococcus erythropolis KA2-5-1 expresses high levels of Dsz enzymes in the presence of sulfate.
    Tanaka Y; Yoshikawa O; Maruhashi K; Kurane R
    Arch Microbiol; 2002 Nov; 178(5):351-7. PubMed ID: 12375103
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Site-directed mutagenesis enhances the activity of NADH-FMN oxidoreductase (DszD) activity of Rhodococcus erythropolis.
    Kamali N; Tavallaie M; Bambai B; Karkhane AA; Miri M
    Biotechnol Lett; 2010 Jul; 32(7):921-7. PubMed ID: 20349330
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Cloning of a rhodococcal promoter using a transposon for dibenzothiophene biodesulfurization.
    Noda K; Watanabe K; Maruhashi K
    Biotechnol Lett; 2003 Feb; 25(3):1875-82. PubMed ID: 12882585
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Identification of novel genes involved in long-chain n-alkane degradation by Acinetobacter sp. strain DSM 17874.
    Throne-Holst M; Wentzel A; Ellingsen TE; Kotlar HK; Zotchev SB
    Appl Environ Microbiol; 2007 May; 73(10):3327-32. PubMed ID: 17400787
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Rhodococcus opacus expresses the xsc gene to utilize taurine as a carbon source or as a nitrogen source but not as a sulfur source.
    Denger K; Ruff J; Schleheck D; Cook AM
    Microbiology (Reading); 2004 Jun; 150(Pt 6):1859-1867. PubMed ID: 15184572
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Isolation and characterization of styrene metabolism genes from styrene-assimilating soil bacteria Rhodococcus sp. ST-5 and ST-10.
    Toda H; Itoh N
    J Biosci Bioeng; 2012 Jan; 113(1):12-9. PubMed ID: 21996027
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A flavin reductase stimulates DszA and DszC proteins of Rhodococcus erythropolis IGTS8 in vitro.
    Xi L; Squires CH; Monticello DJ; Childs JD
    Biochem Biophys Res Commun; 1997 Jan; 230(1):73-5. PubMed ID: 9020064
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A multipurpose transposon-based vector system mediates protein expression in Rhodococcus erythropolis.
    Sallam KI; Tamura N; Tamura T
    Gene; 2007 Jan; 386(1-2):173-82. PubMed ID: 17098379
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Biodegradation of 4-nitroanisole by two Rhodococcus spp.
    Schäfer A; Harms H; Zehnder AJ
    Biodegradation; 1996 Jun; 7(3):249-55. PubMed ID: 8782395
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Construction of Rhodococcus random mutagenesis libraries using Tn5 transposition complexes.
    Fernandes PJ; Powell JAC; Archer JAC
    Microbiology (Reading); 2001 Sep; 147(Pt 9):2529-2536. PubMed ID: 11535792
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Characterization of IS1676 from Rhodococcus erythropolis SQ1.
    Lessard PA; O'Brien XM; Ahlgren NA; Ribich SA; Sinskey AJ
    Appl Microbiol Biotechnol; 1999 Nov; 52(6):811-9. PubMed ID: 10616714
    [TBL] [Abstract][Full Text] [Related]  

  • 19. [Cloning and analysis of a new aliphatic amidase gene from Rhodococcus erythropolis TA37].
    Lavrov KV; Karpova IY; Epremyan AS; Yanenko AS
    Genetika; 2014 Oct; 50(10):1145-53. PubMed ID: 25720247
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Enhanced desulfurization in a transposon-mutant strain of Rhodococcus erythropolis.
    Watanabe K; Noda K; Maruhashi K
    Biotechnol Lett; 2003 Aug; 25(16):1299-304. PubMed ID: 14514056
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.