These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
183 related articles for article (PubMed ID: 26407888)
21. Residue 345 of dibenzothiophene (DBT) sulfone monooxygenase is involved in C-S bond cleavage specificity of alkylated DBT sulfones. Konishi J; Maruhashi K Biotechnol Lett; 2003 Jul; 25(14):1199-202. PubMed ID: 12967013 [TBL] [Abstract][Full Text] [Related]
22. Characterization of a second Rhodococcus erythropolis SQ1 3-ketosteroid 9alpha-hydroxylase activity comprising a terminal oxygenase homologue, KshA2, active with oxygenase-reductase component KshB. van der Geize R; Hessels GI; Nienhuis-Kuiper M; Dijkhuizen L Appl Environ Microbiol; 2008 Dec; 74(23):7197-203. PubMed ID: 18836008 [TBL] [Abstract][Full Text] [Related]
23. Characterization of nitrile hydratase genes cloned by DNA screening from Rhodococcus erythropolis. Duran R; Nishiyama M; Horinouchi S; Beppu T Biosci Biotechnol Biochem; 1993 Aug; 57(8):1323-8. PubMed ID: 7764017 [TBL] [Abstract][Full Text] [Related]
24. Rhodococcus erythropolis DCL14 contains a novel degradation pathway for limonene. van der Werf MJ; Swarts HJ; de Bont JA Appl Environ Microbiol; 1999 May; 65(5):2092-102. PubMed ID: 10224006 [TBL] [Abstract][Full Text] [Related]
25. Functional characterization of a catabolic plasmid from polychlorinated- biphenyl-degrading Rhodococcus sp. strain RHA1. Warren R; Hsiao WW; Kudo H; Myhre M; Dosanjh M; Petrescu A; Kobayashi H; Shimizu S; Miyauchi K; Masai E; Yang G; Stott JM; Schein JE; Shin H; Khattra J; Smailus D; Butterfield YS; Siddiqui A; Holt R; Marra MA; Jones SJ; Mohn WW; Brinkman FS; Fukuda M; Davies J; Eltis LD J Bacteriol; 2004 Nov; 186(22):7783-95. PubMed ID: 15516593 [TBL] [Abstract][Full Text] [Related]
26. Analysis of regulatory elements and genes required for carbon tetrachloride degradation in Pseudomonas stutzeri strain KC. Sepúlveda-Torre L; Huang A; Kim H; Criddle CS J Mol Microbiol Biotechnol; 2002 Mar; 4(2):151-61. PubMed ID: 11873910 [TBL] [Abstract][Full Text] [Related]
27. Homologous npdGI genes in 2,4-dinitrophenol- and 4-nitrophenol-degrading Rhodococcus spp. Heiss G; Trachtmann N; Abe Y; Takeo M; Knackmuss HJ Appl Environ Microbiol; 2003 May; 69(5):2748-54. PubMed ID: 12732545 [TBL] [Abstract][Full Text] [Related]
28. Biodegradation of 3-nitrotoluene by Rhodococcus sp. strain ZWL3NT. Tian XJ; Liu XY; Liu H; Wang SJ; Zhou NY Appl Microbiol Biotechnol; 2013 Oct; 97(20):9217-23. PubMed ID: 23250222 [TBL] [Abstract][Full Text] [Related]
29. Enhancement of biodesulfurization in two-liquid systems by heterogeneous expression of vitreoscilla hemoglobin. Xiong X; Xing J; Li X; Bai X; Li W; Li Y; Liu H Appl Environ Microbiol; 2007 Apr; 73(7):2394-7. PubMed ID: 17293512 [TBL] [Abstract][Full Text] [Related]
30. ChoG is the main inducible extracellular cholesterol oxidase of Rhodococcus sp. strain CECT3014. Fernández de Las Heras L; Mascaraque V; García Fernández E; Navarro-Llorens JM; Perera J; Drzyzga O Microbiol Res; 2011 Jul; 166(5):403-18. PubMed ID: 20630728 [TBL] [Abstract][Full Text] [Related]
31. Reconstruction of a genome-scale metabolic network of Rhodococcus erythropolis for desulfurization studies. Aggarwal S; Karimi IA; Lee DY Mol Biosyst; 2011 Nov; 7(11):3122-31. PubMed ID: 21912787 [TBL] [Abstract][Full Text] [Related]
32. Induction and carbon catabolite repression of phenol degradation genes in Rhodococcus erythropolis and Rhodococcus jostii. Szőköl J; Rucká L; Šimčíková M; Halada P; Nešvera J; Pátek M Appl Microbiol Biotechnol; 2014 Oct; 98(19):8267-79. PubMed ID: 24938209 [TBL] [Abstract][Full Text] [Related]
33. Genome sequence of Rhodococcus erythropolis XP, a biodesulfurizing bacterium with industrial potential. Tao F; Zhao P; Li Q; Su F; Yu B; Ma C; Tang H; Tai C; Wu G; Xu P J Bacteriol; 2011 Nov; 193(22):6422-3. PubMed ID: 22038975 [TBL] [Abstract][Full Text] [Related]
34. Aerobic biodegradation of 2,2'-dithiodibenzoic acid produced from dibenzothiophene metabolites. Young RF; Cheng SM; Fedorak PM Appl Environ Microbiol; 2006 Jan; 72(1):491-6. PubMed ID: 16391083 [TBL] [Abstract][Full Text] [Related]
35. Molecular cloning of the gene cluster for lariatin biosynthesis of Rhodococcus jostii K01-B0171. Inokoshi J; Matsuhama M; Miyake M; Ikeda H; Tomoda H Appl Microbiol Biotechnol; 2012 Jul; 95(2):451-60. PubMed ID: 22388571 [TBL] [Abstract][Full Text] [Related]
36. Functional analysis of putative transporters involved in oligotrophic growth of Rhodococcus erythropolis N9T-4. Matsuoka T; Yoshida N Appl Microbiol Biotechnol; 2019 May; 103(10):4167-4175. PubMed ID: 30953120 [TBL] [Abstract][Full Text] [Related]
37. Rhodococcus phenolicus sp. nov., a novel bioprocessor isolated actinomycete with the ability to degrade chlorobenzene, dichlorobenzene and phenol as sole carbon sources. Rehfuss M; Urban J Syst Appl Microbiol; 2005 Oct; 28(8):695-701. PubMed ID: 16261859 [TBL] [Abstract][Full Text] [Related]
38. Characterization and functional analysis of a novel gene cluster involved in biphenyl degradation in Rhodococcus sp. strain R04. Yang X; Liu X; Song L; Xie F; Zhang G; Qian S J Appl Microbiol; 2007 Dec; 103(6):2214-24. PubMed ID: 18045404 [TBL] [Abstract][Full Text] [Related]
39. Identification of two-component regulatory genes involved in o-xylene degradation by Rhodococcus sp. strain DK17. Kim D; Chae JC; Zylstra GJ; Sohn HY; Kwon GS; Kim E J Microbiol; 2005 Feb; 43(1):49-53. PubMed ID: 15765058 [TBL] [Abstract][Full Text] [Related]
40. Degradation of benzotrifluoride via the dioxygenase pathway in Rhodococcus sp. 065240. Yano K; Wachi M; Tsuchida S; Kitazume T; Iwai N Biosci Biotechnol Biochem; 2015; 79(3):496-504. PubMed ID: 25412819 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]