BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

860 related articles for article (PubMed ID: 26408230)

  • 1. Deregulation of mitochondrial functions provoked by long-chain fatty acid accumulating in long-chain 3-hydroxyacyl-CoA dehydrogenase and mitochondrial permeability transition deficiencies in rat heart--mitochondrial permeability transition pore opening as a potential contributing pathomechanism of cardiac alterations in these disorders.
    Cecatto C; Hickmann FH; Rodrigues MD; Amaral AU; Wajner M
    FEBS J; 2015 Dec; 282(24):4714-26. PubMed ID: 26408230
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Mitochondrial bioenergetics deregulation caused by long-chain 3-hydroxy fatty acids accumulating in LCHAD and MTP deficiencies in rat brain: a possible role of mPTP opening as a pathomechanism in these disorders?
    Tonin AM; Amaral AU; Busanello EN; Gasparotto J; Gelain DP; Gregersen N; Wajner M
    Biochim Biophys Acta; 2014 Sep; 1842(9):1658-67. PubMed ID: 24946182
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Uncoupling, metabolic inhibition and induction of mitochondrial permeability transition in rat liver mitochondria caused by the major long-chain hydroxyl monocarboxylic fatty acids accumulating in LCHAD deficiency.
    Hickmann FH; Cecatto C; Kleemann D; Monteiro WO; Castilho RF; Amaral AU; Wajner M
    Biochim Biophys Acta; 2015; 1847(6-7):620-8. PubMed ID: 25868874
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Disturbance of mitochondrial functions provoked by the major long-chain 3-hydroxylated fatty acids accumulating in MTP and LCHAD deficiencies in skeletal muscle.
    Cecatto C; Godoy KDS; da Silva JC; Amaral AU; Wajner M
    Toxicol In Vitro; 2016 Oct; 36():1-9. PubMed ID: 27371118
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Long-chain 3-hydroxy fatty acids accumulating in long-chain 3-hydroxyacyl-CoA dehydrogenase and mitochondrial trifunctional protein deficiencies uncouple oxidative phosphorylation in heart mitochondria.
    Tonin AM; Amaral AU; Busanello EN; Grings M; Castilho RF; Wajner M
    J Bioenerg Biomembr; 2013 Feb; 45(1-2):47-57. PubMed ID: 23065309
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Metabolite accumulation in VLCAD deficiency markedly disrupts mitochondrial bioenergetics and Ca
    Cecatto C; Amaral AU; da Silva JC; Wajner A; Schimit MOV; da Silva LHR; Wajner SM; Zanatta Â; Castilho RF; Wajner M
    FEBS J; 2018 Apr; 285(8):1437-1455. PubMed ID: 29476646
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Long-chain 3-hydroxy fatty acids accumulating in LCHAD and MTP deficiencies induce oxidative stress in rat brain.
    Tonin AM; Grings M; Busanello EN; Moura AP; Ferreira GC; Viegas CM; Fernandes CG; Schuck PF; Wajner M
    Neurochem Int; 2010 Jul; 56(8):930-6. PubMed ID: 20381565
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Disturbance of mitochondrial energy homeostasis caused by the metabolites accumulating in LCHAD and MTP deficiencies in rat brain.
    Tonin AM; Ferreira GC; Grings M; Viegas CM; Busanello EN; Amaral AU; Zanatta A; Schuck PF; Wajner M
    Life Sci; 2010 May; 86(21-22):825-31. PubMed ID: 20399795
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Impairment of mitochondrial bioenergetics and permeability transition induction caused by major long-chain fatty acids accumulating in VLCAD deficiency in skeletal muscle as potential pathomechanisms of myopathy.
    Cecatto C; Amaral AU; Roginski AC; Castilho RF; Wajner M
    Toxicol In Vitro; 2020 Feb; 62():104665. PubMed ID: 31629068
    [TBL] [Abstract][Full Text] [Related]  

  • 10. cis-4-Decenoic and decanoic acids impair mitochondrial energy, redox and Ca(2+) homeostasis and induce mitochondrial permeability transition pore opening in rat brain and liver: Possible implications for the pathogenesis of MCAD deficiency.
    Amaral AU; Cecatto C; da Silva JC; Wajner A; Godoy KDS; Ribeiro RT; Wajner M
    Biochim Biophys Acta; 2016 Sep; 1857(9):1363-1372. PubMed ID: 27240720
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Fatal pitfalls in newborn screening for mitochondrial trifunctional protein (MTP)/long-chain 3-Hydroxyacyl-CoA dehydrogenase (LCHAD) deficiency.
    Lotz-Havla AS; Röschinger W; Schiergens K; Singer K; Karall D; Konstantopoulou V; Wortmann SB; Maier EM
    Orphanet J Rare Dis; 2018 Jul; 13(1):122. PubMed ID: 30029694
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Pharmacological inhibition of carnitine palmitoyltransferase 1 restores mitochondrial oxidative phosphorylation in human trifunctional protein deficient fibroblasts.
    Lefort B; Gouache E; Acquaviva C; Tardieu M; Benoist JF; Dumas JF; Servais S; Chevalier S; Vianey-Saban C; Labarthe F
    Biochim Biophys Acta Mol Basis Dis; 2017 Jun; 1863(6):1292-1299. PubMed ID: 28392417
    [TBL] [Abstract][Full Text] [Related]  

  • 13. 2-Methylcitric acid impairs glutamate metabolism and induces permeability transition in brain mitochondria.
    Amaral AU; Cecatto C; Castilho RF; Wajner M
    J Neurochem; 2016 Apr; 137(1):62-75. PubMed ID: 26800654
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Evaluation of earlier versus later dietary management in long-chain 3-hydroxyacyl-CoA dehydrogenase or mitochondrial trifunctional protein deficiency: a systematic review.
    Fraser H; Geppert J; Johnson R; Johnson S; Connock M; Clarke A; Taylor-Phillips S; Stinton C
    Orphanet J Rare Dis; 2019 Nov; 14(1):258. PubMed ID: 31730477
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Sulfite disrupts brain mitochondrial energy homeostasis and induces mitochondrial permeability transition pore opening via thiol group modification.
    Grings M; Moura AP; Amaral AU; Parmeggiani B; Gasparotto J; Moreira JC; Gelain DP; Wyse AT; Wajner M; Leipnitz G
    Biochim Biophys Acta; 2014 Sep; 1842(9):1413-22. PubMed ID: 24793416
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Evidence that the major metabolites accumulating in medium-chain acyl-CoA dehydrogenase deficiency disturb mitochondrial energy homeostasis in rat brain.
    Schuck PF; Ferreira Gda C; Tonin AM; Viegas CM; Busanello EN; Moura AP; Zanatta A; Klamt F; Wajner M
    Brain Res; 2009 Nov; 1296():117-26. PubMed ID: 19703432
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Mevalonolactone disrupts mitochondrial functions and induces permeability transition pore opening in rat brain mitochondria: Implications for the pathogenesis of mevalonic aciduria.
    Cecatto C; Amaral AU; da Silva JC; Wajner A; Godoy KDS; Ribeiro RT; Gonçalves AM; Vargas CR; Wajner M
    Neurochem Int; 2017 Sep; 108():133-145. PubMed ID: 28284974
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Ethylmalonic acid induces permeability transition in isolated brain mitochondria.
    Cecatto C; Amaral AU; Leipnitz G; Castilho RF; Wajner M
    Neurotox Res; 2014 Aug; 26(2):168-78. PubMed ID: 24557940
    [TBL] [Abstract][Full Text] [Related]  

  • 19. [Hydrogen sulfide inhibits Ca(2+)-induced mitochondrial permeability transition pore opening in adult and old rat heart].
    Strutyns'ka NA; Semenykhina OM; Chorna SV; Vavilova HL; Sahach VF
    Fiziol Zh (1994); 2011; 57(6):3-14. PubMed ID: 22420153
    [TBL] [Abstract][Full Text] [Related]  

  • 20. [Hydrogen sulfide inhibits Ca(2+)-induced mitochondrial permeability transition pore opening in spontaneously hypertensive rats].
    Strutyns'ka NA; Dorofeieva NO; Vavilova HL; Sahach VF
    Fiziol Zh (1994); 2013; 59(1):3-10. PubMed ID: 23713344
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 43.