These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
372 related articles for article (PubMed ID: 26408261)
1. Biosurfactant-enhanced bioremediation of aged polycyclic aromatic hydrocarbons (PAHs) in creosote contaminated soil. Bezza FA; Chirwa EM Chemosphere; 2016 Feb; 144():635-44. PubMed ID: 26408261 [TBL] [Abstract][Full Text] [Related]
2. Spatial uncoupling of biodegradation, soil respiration, and PAH concentration in a creosote contaminated soil. Bengtsson G; Törneman N; Yang X Environ Pollut; 2010 Sep; 158(9):2865-71. PubMed ID: 20630638 [TBL] [Abstract][Full Text] [Related]
3. Bacterial community dynamics and polycyclic aromatic hydrocarbon degradation during bioremediation of heavily creosote-contaminated soil. Viñas M; Sabaté J; Espuny MJ; Solanas AM Appl Environ Microbiol; 2005 Nov; 71(11):7008-18. PubMed ID: 16269736 [TBL] [Abstract][Full Text] [Related]
4. Influence of rhamnolipid biosurfactant and Brij-35 synthetic surfactant on Wolf DC; Gan J Environ Pollut; 2018 Dec; 243(Pt B):1846-1853. PubMed ID: 30408872 [TBL] [Abstract][Full Text] [Related]
5. Fungal bioremediation of the creosote-contaminated soil: influence of Pleurotus ostreatus and Irpex lacteus on polycyclic aromatic hydrocarbons removal and soil microbial community composition in the laboratory-scale study. Byss M; Elhottová D; Tříska J; Baldrian P Chemosphere; 2008 Nov; 73(9):1518-23. PubMed ID: 18782639 [TBL] [Abstract][Full Text] [Related]
6. Natural and assisted dissipation of polycyclic aromatic hydrocarbons in a long-term co-contaminated soil with creosote and potentially toxic elements. Madrid F; Rubio-Bellido M; Villaverde J; Peña A; Morillo E Sci Total Environ; 2019 Apr; 660():705-714. PubMed ID: 30743956 [TBL] [Abstract][Full Text] [Related]
7. Rhamnolipid-enhanced solubilization and biodegradation of PAHs in soils after conventional bioremediation. Posada-Baquero R; Grifoll M; Ortega-Calvo JJ Sci Total Environ; 2019 Jun; 668():790-796. PubMed ID: 30870747 [TBL] [Abstract][Full Text] [Related]
8. Bacteria involved in biodegradation of creosote PAH - A case study of long-term contaminated industrial area. Smułek W; Sydow M; Zabielska-Matejuk J; Kaczorek E Ecotoxicol Environ Saf; 2020 Jan; 187():109843. PubMed ID: 31678701 [TBL] [Abstract][Full Text] [Related]
9. Microbial populations related to PAH biodegradation in an aged biostimulated creosote-contaminated soil. Lladó S; Jiménez N; Viñas M; Solanas AM Biodegradation; 2009 Sep; 20(5):593-601. PubMed ID: 19153811 [TBL] [Abstract][Full Text] [Related]
10. Microbial community changes during the bioremediation of creosote-contaminated soil. Grant RJ; Muckian LM; Clipson NJ; Doyle EM Lett Appl Microbiol; 2007 Mar; 44(3):293-300. PubMed ID: 17309507 [TBL] [Abstract][Full Text] [Related]
11. Bioavailability assessment and environmental fate of polycyclic aromatic hydrocarbons in biostimulated creosote-contaminated soil. Sabaté J; Viñas M; Solanas AM Chemosphere; 2006 Jun; 63(10):1648-59. PubMed ID: 16325226 [TBL] [Abstract][Full Text] [Related]
12. Soil bacterial community dynamics following surfactant addition and bioaugmentation in pyrene-contaminated soils. Wolf DC; Cryder Z; Gan J Chemosphere; 2019 Sep; 231():93-102. PubMed ID: 31128356 [TBL] [Abstract][Full Text] [Related]
13. Effects of humic substances and soya lecithin on the aerobic bioremediation of a soil historically contaminated by polycyclic aromatic hydrocarbons (PAHs). Fava F; Berselli S; Conte P; Piccolo A; Marchetti L Biotechnol Bioeng; 2004 Oct; 88(2):214-23. PubMed ID: 15449300 [TBL] [Abstract][Full Text] [Related]
14. Bioremediation of phenols and polycyclic aromatic hydrocarbons in creosote contaminated soil using ex-situ landtreatment. Guerin TF J Hazard Mater; 1999 Mar; 65(3):305-15. PubMed ID: 10337404 [TBL] [Abstract][Full Text] [Related]
15. Nutrient-limited biodegradation of PAH in various soil strata at a creosote contaminated site. Breedveld GD; Sparrevik M Biodegradation; 2000; 11(6):391-9. PubMed ID: 11587443 [TBL] [Abstract][Full Text] [Related]
16. Rhizosphere-enhanced biosurfactant action on slowly desorbing PAHs in contaminated soil. Posada-Baquero R; Jiménez-Volkerink SN; García JL; Vila J; Cantos M; Grifoll M; Ortega-Calvo JJ Sci Total Environ; 2020 Jun; 720():137608. PubMed ID: 32143055 [TBL] [Abstract][Full Text] [Related]
17. Impact of biosurfactant and iron nanoparticles on biodegradation of polyaromatic hydrocarbons (PAHs). Parthipan P; Cheng L; Dhandapani P; Elumalai P; Huang M; Rajasekar A Environ Pollut; 2022 Aug; 306():119384. PubMed ID: 35504349 [TBL] [Abstract][Full Text] [Related]
18. Two-liquid-phase system: A promising technique for predicting bioavailability of polycyclic aromatic hydrocarbons in long-term contaminated soils. Wang C; Wang Z; Li Z; Ahmad R Chemosphere; 2017 Feb; 169():685-692. PubMed ID: 27914353 [TBL] [Abstract][Full Text] [Related]
19. Biosurfactant from red ash trees enhances the bioremediation of PAH contaminated soil at a former gasworks site. Blyth W; Shahsavari E; Morrison PD; Ball AS J Environ Manage; 2015 Oct; 162():30-6. PubMed ID: 26217887 [TBL] [Abstract][Full Text] [Related]
20. In vivo measurement, in vitro estimation and fugacity prediction of PAH bioavailability in post-remediated creosote-contaminated soil. Juhasz AL; Weber J; Stevenson G; Slee D; Gancarz D; Rofe A; Smith E Sci Total Environ; 2014 Mar; 473-474():147-54. PubMed ID: 24368196 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]