BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

223 related articles for article (PubMed ID: 26408956)

  • 41. T1, T2 relaxation and magnetization transfer in tissue at 3T.
    Stanisz GJ; Odrobina EE; Pun J; Escaravage M; Graham SJ; Bronskill MJ; Henkelman RM
    Magn Reson Med; 2005 Sep; 54(3):507-12. PubMed ID: 16086319
    [TBL] [Abstract][Full Text] [Related]  

  • 42. High-resolution three-dimensional macromolecular proton fraction mapping for quantitative neuroanatomical imaging of the rodent brain in ultra-high magnetic fields.
    Naumova AV; Akulov AE; Khodanovich MY; Yarnykh VL
    Neuroimage; 2017 Feb; 147():985-993. PubMed ID: 27646128
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Myelin deficits in patients with recurrent major depressive disorder: An inhomogeneous magnetization transfer study.
    Hou G; Lai W; Jiang W; Liu X; Qian L; Zhang Y; Zhou Z
    Neurosci Lett; 2021 Apr; 750():135768. PubMed ID: 33636288
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Quantitative MRI and ultrastructural examination of the cuprizone mouse model of demyelination.
    Thiessen JD; Zhang Y; Zhang H; Wang L; Buist R; Del Bigio MR; Kong J; Li XM; Martin M
    NMR Biomed; 2013 Nov; 26(11):1562-81. PubMed ID: 23943390
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Time-efficient, high-resolution, whole brain three-dimensional macromolecular proton fraction mapping.
    Yarnykh VL
    Magn Reson Med; 2016 May; 75(5):2100-6. PubMed ID: 26102097
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Myelin mapping in the living mouse brain using manganese-enhanced magnetization transfer MRI.
    Watanabe T; Frahm J; Michaelis T
    Neuroimage; 2010 Jan; 49(2):1200-4. PubMed ID: 19796698
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Preliminary Observations on Sensitivity and Specificity of Magnetization Transfer Asymmetry for Imaging Myelin of Rat Brain at High Field.
    Kim JW; Choi J; Cho J; Lee C; Jeon D; Park SH
    Biomed Res Int; 2015; 2015():565391. PubMed ID: 26413534
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Magnetization transfer magnetic resonance imaging: a clinical review.
    Mehta RC; Pike GB; Enzmann DR
    Top Magn Reson Imaging; 1996 Aug; 8(4):214-30. PubMed ID: 8870180
    [TBL] [Abstract][Full Text] [Related]  

  • 49. How does magnetization transfer influence mcDESPOT results?
    Zhang J; Kolind SH; Laule C; MacKay AL
    Magn Reson Med; 2015 Nov; 74(5):1327-35. PubMed ID: 25399771
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Volumetric method for evaluating magnetization transfer ratio of tissue categories: application to areas of white matter signal hyperintensity in the elderly.
    Tanabe JL; Ezekiel F; Jagust WJ; Schuff N; Fein G
    Radiology; 1997 Aug; 204(2):570-5. PubMed ID: 9240555
    [TBL] [Abstract][Full Text] [Related]  

  • 51. High-resolution maps of magnetization transfer with inherent correction for RF inhomogeneity and T1 relaxation obtained from 3D FLASH MRI.
    Helms G; Dathe H; Kallenberg K; Dechent P
    Magn Reson Med; 2008 Dec; 60(6):1396-407. PubMed ID: 19025906
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Characterizing healthy and diseased white matter using quantitative magnetization transfer and multicomponent T(2) relaxometry: A unified view via a four-pool model.
    Levesque IR; Pike GB
    Magn Reson Med; 2009 Dec; 62(6):1487-96. PubMed ID: 19859946
    [TBL] [Abstract][Full Text] [Related]  

  • 53. On the origin of apparent low tissue signals in balanced SSFP.
    Bieri O; Scheffler K
    Magn Reson Med; 2006 Nov; 56(5):1067-74. PubMed ID: 17036284
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Cross-relaxation imaging reveals detailed anatomy of white matter fiber tracts in the human brain.
    Yarnykh VL; Yuan C
    Neuroimage; 2004 Sep; 23(1):409-24. PubMed ID: 15325389
    [TBL] [Abstract][Full Text] [Related]  

  • 55. White matter intercompartmental water exchange rates determined from detailed modeling of the myelin sheath.
    van Gelderen P; Duyn JH
    Magn Reson Med; 2019 Jan; 81(1):628-638. PubMed ID: 30230605
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Spatiotemporal trajectories of quantitative magnetization transfer measurements in injured spinal cord using simplified acquisitions.
    Wang F; Wu TL; Li K; Chen LM; Gore JC
    Neuroimage Clin; 2019; 23():101921. PubMed ID: 31491830
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Multimodal principal component analysis to identify major features of white matter structure and links to reading.
    Geeraert BL; Chamberland M; Lebel RM; Lebel C
    PLoS One; 2020; 15(8):e0233244. PubMed ID: 32797080
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Z-Spectrum analysis provides proton environment data (ZAPPED): a new two-pool technique for human gray and white matter.
    Miyazaki M; Ouyang C; Zhou X; Murdoch JB; Fushimi Y; Okada T; Fujimoto K; Kido A; Arakawa Y; Miyamoto S; Togashi K
    PLoS One; 2015; 10(3):e0119915. PubMed ID: 25768108
    [TBL] [Abstract][Full Text] [Related]  

  • 59. A model-based framework for correcting
    Rowley CD; Campbell JSW; Wu Z; Leppert IR; Rudko DA; Pike GB; Tardif CL
    Magn Reson Med; 2021 Oct; 86(4):2192-2207. PubMed ID: 33956348
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Combining inhomogeneous magnetization transfer and multipoint Dixon acquisition: Potential utility and evaluation.
    Ercan E; Varma G; Dimitrov IE; Xi Y; Pinho MC; Yu FF; Zhang S; Wang X; Madhuranthakam AJ; Lenkinski RE; Alsop DC; Vinogradov E
    Magn Reson Med; 2021 Apr; 85(4):2136-2144. PubMed ID: 33107146
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 12.