These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

323 related articles for article (PubMed ID: 26409025)

  • 1. Photoinduced electron transfer between Fe(III) and adenosine triphosphate-BODIPY conjugates: Application to alkaline-phosphatase-linked immunoassay.
    Lin JH; Yang YC; Shih YC; Hung SY; Lu CY; Tseng WL
    Biosens Bioelectron; 2016 Mar; 77():242-8. PubMed ID: 26409025
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Magnetite nanoparticle-induced fluorescence quenching of adenosine triphosphate-BODIPY Conjugates: application to adenosine triphosphate and pyrophosphate sensing.
    Yu CJ; Wu SM; Tseng WL
    Anal Chem; 2013 Sep; 85(18):8559-65. PubMed ID: 23919280
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Tween 20-stabilized gold nanoparticles combined with adenosine triphosphate-BODIPY conjugates for the fluorescence detection of adenosine with more than 1000-fold selectivity.
    Hung SY; Shih YC; Tseng WL
    Anal Chim Acta; 2015 Feb; 857():64-70. PubMed ID: 25604821
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Carbon quantum dots-based recyclable real-time fluorescence assay for alkaline phosphatase with adenosine triphosphate as substrate.
    Qian Z; Chai L; Tang C; Huang Y; Chen J; Feng H
    Anal Chem; 2015 Mar; 87(5):2966-73. PubMed ID: 25642736
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Real-time fluorescence assay of alkaline phosphatase in living cells using boron-doped graphene quantum dots as fluorophores.
    Chen L; Yang G; Wu P; Cai C
    Biosens Bioelectron; 2017 Oct; 96():294-299. PubMed ID: 28511112
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Fluorescence detection of adenosine-5'-triphosphate and alkaline phosphatase based on the generation of CdS quantum dots.
    Liu S; Wang X; Pang S; Na W; Yan X; Su X
    Anal Chim Acta; 2014 May; 827():103-10. PubMed ID: 24833001
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A gold nanoparticles-based colorimetric assay for alkaline phosphatase detection with tunable dynamic range.
    Li CM; Zhen SJ; Wang J; Li YF; Huang CZ
    Biosens Bioelectron; 2013 May; 43():366-71. PubMed ID: 23356994
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Fluorescence assay for alkaline phosphatase based on ATP hydrolysis-triggered dissociation of cerium coordination polymer nanoparticles.
    Chen C; Yuan Q; Ni P; Jiang Y; Zhao Z; Lu Y
    Analyst; 2018 Aug; 143(16):3821-3828. PubMed ID: 30010688
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Switchable fluorescence of gold nanoclusters for probing the activity of alkaline phosphatase and its application in immunoassay.
    Hu XL; Wu XM; Fang X; Li ZJ; Wang GL
    Biosens Bioelectron; 2016 Mar; 77():666-72. PubMed ID: 26496220
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Polymerization-sensitive switch-on monomer for terminal transferase activity assay.
    Batule BS; Lee CY; Park KS; Park HG
    Artif Cells Nanomed Biotechnol; 2019 Dec; 47(1):256-259. PubMed ID: 30688096
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Photoelectrochemical determination of alkaline phosphatase activity based on a photo-excited electron transfer strategy.
    Tian J; Yang Y; Huang M; Zhou C; Lu J
    Talanta; 2019 May; 196():293-299. PubMed ID: 30683366
    [TBL] [Abstract][Full Text] [Related]  

  • 12. CeO
    Tong L; Wang X; Gao W; Liu Z; Chen Z; Cheng G; Cao W; Sui M; Tang B
    Anal Chem; 2018 Dec; 90(24):14507-14513. PubMed ID: 30477304
    [TBL] [Abstract][Full Text] [Related]  

  • 13. VS
    Ma X; Du C; Shang M; Song W
    Anal Bioanal Chem; 2018 Feb; 410(5):1417-1426. PubMed ID: 29256077
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Novel BODIPY-based fluorescence turn-on sensor for Fe3+ and its bioimaging application in living cells.
    Sui B; Tang S; Liu T; Kim B; Belfield KD
    ACS Appl Mater Interfaces; 2014; 6(21):18408-12. PubMed ID: 25337695
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Quenching of graphene quantum dots fluorescence by alkaline phosphatase activity in the presence of hydroquinone diphosphate.
    Pereira da Silva Neves MM; González-García MB; Pérez-Junquera A; Hernández-Santos D; Fanjul-Bolado P
    Luminescence; 2018 May; 33(3):552-558. PubMed ID: 29356382
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Boron-dipyrromethene based reversible and reusable selective chemosensor for fluoride detection.
    Madhu S; Ravikanth M
    Inorg Chem; 2014 Feb; 53(3):1646-53. PubMed ID: 24450883
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Photoinduced electron transfer fluorometric Hg(II) chemosensor based on a BODIPY armed with a tetrapod receptor.
    Culzoni MJ; Muñoz de la Peña A; Machuca A; Goicoechea HC; Brasca R; Babiano R
    Talanta; 2013 Dec; 117():288-96. PubMed ID: 24209343
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Fluorescence Immunoassay Based on the Phosphate-Triggered Fluorescence Turn-on Detection of Alkaline Phosphatase.
    Chen C; Zhao J; Lu Y; Sun J; Yang X
    Anal Chem; 2018 Mar; 90(5):3505-3511. PubMed ID: 29392933
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Biocompatibility FeOOH QD@ATP-BODIPY nanocomposite for glutathione detection and intracellular imaging.
    Tong L; Wang X; Sun C; Lu R; Chen T; Wang J; Chen Z; Tang B
    Talanta; 2024 Aug; 276():126251. PubMed ID: 38761657
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Real-time fluorescence assays of alkaline phosphatase and ATP sulfurylase activities based on a novel PPi fluorescent probe.
    Wang X; Zhang Z; Ma X; Wen J; Geng Z; Wang Z
    Talanta; 2015 May; 137():156-60. PubMed ID: 25770619
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 17.