These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

162 related articles for article (PubMed ID: 26409105)

  • 1. Granular activated carbon as nucleating agent for aerobic sludge granulation: Effect of GAC size on velocity field differences (GAC versus flocs) and aggregation behavior.
    Zhou JH; Zhao H; Hu M; Yu HT; Xu XY; Vidonish J; Alvarez PJ; Zhu L
    Bioresour Technol; 2015 Dec; 198():358-63. PubMed ID: 26409105
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effect of granular activated carbon on the aerobic granulation of sludge and its mechanism.
    Tao J; Qin L; Liu X; Li B; Chen J; You J; Shen Y; Chen X
    Bioresour Technol; 2017 Jul; 236():60-67. PubMed ID: 28390278
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Enhancing robustness of halophilic aerobic granule sludge by granular activated carbon at decreasing temperature.
    Han F; Zhang M; Liu Z; Han Y; Li Q; Zhou W
    Chemosphere; 2022 Apr; 292():133507. PubMed ID: 34979206
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Microscopic observation of aerobic granulation in sequential aerobic sludge blanket reactor.
    Tay JH; Liu QS; Liu Y
    J Appl Microbiol; 2001 Jul; 91(1):168-75. PubMed ID: 11442727
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Enhanced biological phosphorus removal in aerobic granular sludge reactors by granular activated carbon dosing.
    Sarvajith M; Nancharaiah YV
    Sci Total Environ; 2022 Jun; 823():153643. PubMed ID: 35124048
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Reducing the startup time of aerobic granular sludge reactors through seeding floccular sludge with crushed aerobic granules.
    Pijuan M; Werner U; Yuan Z
    Water Res; 2011 Oct; 45(16):5075-83. PubMed ID: 21803396
    [TBL] [Abstract][Full Text] [Related]  

  • 7. [Effects of Magnetic Activated Carbon with Different Particle Sizes on Sludge Granulation in a SBR System].
    Xin X; Guan L; Guo JY; Liu J; Feng M; Yu TT
    Huan Jing Ke Xue; 2017 Nov; 38(11):4679-4686. PubMed ID: 29965413
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Modeling and verification of selective sludge discharge as the controlling factor for aerobic granulation.
    Li AJ; Zhang T; Li XY
    Water Sci Technol; 2010; 62(10):2442-9. PubMed ID: 21076232
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Characterization, modeling and application of aerobic granular sludge for wastewater treatment.
    Liu XW; Yu HQ; Ni BJ; Sheng GP
    Adv Biochem Eng Biotechnol; 2009; 113():275-303. PubMed ID: 19373449
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Qualitatively and quantitatively assessing the aggregation ability of sludge during aerobic granulation process combined XDLVO theory with physicochemical properties.
    Yuan S; Gao M; Ma H; Afzal MZ; Wang YK; Wang M; Xu H; Wang SG; Wang XH
    J Environ Sci (China); 2018 May; 67():154-160. PubMed ID: 29778148
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Key syntrophic partnerships identified in a granular activated carbon amended UASB treating municipal sewage under low temperature conditions.
    Zhang Y; Guo B; Zhang L; Liu Y
    Bioresour Technol; 2020 Sep; 312():123556. PubMed ID: 32464511
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effects of hydraulic retention time on aerobic granulation and granule growth kinetics at steady state with a fast start-up strategy.
    Liu YQ; Zhang X; Zhang R; Liu WT; Tay JH
    Appl Microbiol Biotechnol; 2016 Jan; 100(1):469-77. PubMed ID: 26403920
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Mathematical modeling of aerobic granular sludge: a review.
    Ni BJ; Yu HQ
    Biotechnol Adv; 2010; 28(6):895-909. PubMed ID: 20728529
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Selective sludge discharge as the determining factor in SBR aerobic granulation: numerical modelling and experimental verification.
    Li AJ; Li XY
    Water Res; 2009 Aug; 43(14):3387-96. PubMed ID: 19505707
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A settling model for full-scale aerobic granular sludge.
    van Dijk EJH; Pronk M; van Loosdrecht MCM
    Water Res; 2020 Nov; 186():116135. PubMed ID: 32891906
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Determining the mechanisms for aerobic granulation from mixed seed of floccular and crushed granules in activated sludge wastewater treatment.
    Verawaty M; Pijuan M; Yuan Z; Bond PL
    Water Res; 2012 Mar; 46(3):761-71. PubMed ID: 22153958
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Aerobic granular sludge: characterization, mechanism of granulation and application to wastewater treatment.
    Gao D; Liu L; Liang H; Wu WM
    Crit Rev Biotechnol; 2011 Jun; 31(2):137-52. PubMed ID: 20919817
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Interaction between phosphorus removal and hybrid granular sludge formation under low hydraulic selection pressure at alternating anaerobic/aerobic conditions.
    Lang L; Wan J; Zhang J; Wang J; Wang Y
    Environ Technol; 2015; 36(21):2746-54. PubMed ID: 25921951
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Bioaugmentation and enhanced formation of microbial granules used in aerobic wastewater treatment.
    Ivanov V; Wang XH; Tay ST; Tay JH
    Appl Microbiol Biotechnol; 2006 Apr; 70(3):374-81. PubMed ID: 16091930
    [TBL] [Abstract][Full Text] [Related]  

  • 20. [Influence of flocculant bacterium on characteristics of aerobic granular sludge].
    Song ZW; Tong LY; Pan YJ; Ren NQ
    Huan Jing Ke Xue; 2010 May; 31(5):1263-8. PubMed ID: 20623862
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.