BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

174 related articles for article (PubMed ID: 26409188)

  • 1. Relating subsurface temperature changes to microbial activity at a crude oil-contaminated site.
    Warren E; Bekins BA
    J Contam Hydrol; 2015 Nov; 182():183-93. PubMed ID: 26409188
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Relative contributions of microbial and infrastructure heat at a crude oil-contaminated site.
    Warren E; Bekins BA
    J Contam Hydrol; 2018 Apr; 211():94-103. PubMed ID: 29622480
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Comparison of surficial CO2 efflux to other measures of subsurface crude oil degradation.
    Warren E; Sihota NJ; Hostettler FD; Bekins BA
    J Contam Hydrol; 2014 Aug; 164():275-84. PubMed ID: 25038543
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Methane oxidation in a crude oil contaminated aquifer: Delineation of aerobic reactions at the plume fringes.
    Amos RT; Bekins BA; Delin GN; Cozzarelli IM; Blowes DW; Kirshtein JD
    J Contam Hydrol; 2011 Jul; 125(1-4):13-25. PubMed ID: 21612840
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effects of crude oil on water and tracer movement in the unsaturated and saturated zones.
    Delin GN; Herkelrath WN
    J Contam Hydrol; 2017 May; 200():49-59. PubMed ID: 28390700
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A mass balance approach to investigating geochemical controls on secondary water quality impacts at a crude oil spill site near Bemidji, MN.
    Ng GH; Bekins BA; Cozzarelli IM; Baedecker MJ; Bennett PC; Amos RT
    J Contam Hydrol; 2014 Aug; 164():1-15. PubMed ID: 24908586
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Occurrence and rates of terminal electron-accepting processes and recharge processes in petroleum hydrocarbon-contaminated subsurface.
    Salminen JM; Hänninen PJ; Leveinen J; Lintinen PT; Jørgensen KS
    J Environ Qual; 2006; 35(6):2273-82. PubMed ID: 17071898
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Multiple lines of evidence to demonstrate vinyl chloride aerobic biodegradation in the vadose zone, and factors controlling rates.
    Patterson BM; Aravena R; Davis GB; Furness AJ; Bastow TP; Bouchard D
    J Contam Hydrol; 2013 Oct; 153():69-77. PubMed ID: 23999077
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Inverse modeling of BTEX dissolution and biodegradation at the Bemidji, MN crude-oil spill site.
    Essaid HI; Cozzarelli IM; Eganhouse RP; Herkelrath WN; Bekins BA; Delin GN
    J Contam Hydrol; 2003 Dec; 67(1-4):269-99. PubMed ID: 14607480
    [TBL] [Abstract][Full Text] [Related]  

  • 10. CO2-efflux measurements for evaluating source zone natural attenuation rates in a petroleum hydrocarbon contaminated aquifer.
    Sihota NJ; Singurindy O; Mayer KU
    Environ Sci Technol; 2011 Jan; 45(2):482-8. PubMed ID: 21142178
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Evidence for iron-mediated anaerobic methane oxidation in a crude oil-contaminated aquifer.
    Amos RT; Bekins BA; Cozzarelli IM; Voytek MA; Kirshtein JD; Jones EJ; Blowes DW
    Geobiology; 2012 Nov; 10(6):506-17. PubMed ID: 22925422
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Crude oil at the bemidji site: 25 years of monitoring, modeling, and understanding.
    Essaid HI; Bekins BA; Herkelrath WN; Delin GN
    Ground Water; 2011; 49(5):706-26. PubMed ID: 20015222
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A mass balance approach to investigate arsenic cycling in a petroleum plume.
    Ziegler BA; Schreiber ME; Cozzarelli IM; Crystal Ng GH
    Environ Pollut; 2017 Dec; 231(Pt 2):1351-1361. PubMed ID: 28943347
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Potential for aerobic and anaerobic biodegradation of petroleum hydrocarbons in boreal subsurface.
    Salminen JM; Tuomi PM; Suortti AM; Jørgensen KS
    Biodegradation; 2004 Feb; 15(1):29-39. PubMed ID: 14971855
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Insights into biodegradation through depth-resolved microbial community functional and structural profiling of a crude-oil contaminant plume.
    Fahrenfeld N; Cozzarelli IM; Bailey Z; Pruden A
    Microb Ecol; 2014 Oct; 68(3):453-62. PubMed ID: 24760171
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Biodegradability of legacy crude oil contamination in Gulf War damaged groundwater wells in Northern Kuwait.
    Bruckberger MC; Morgan MJ; Walsh T; Bastow TP; Prommer H; Mukhopadhyay A; Kaksonen AH; Davis G; Puzon GJ
    Biodegradation; 2019 Feb; 30(1):71-85. PubMed ID: 30729339
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Crude Oil Metabolites in Groundwater at Two Spill Sites.
    Bekins BA; Cozzarelli IM; Erickson ML; Steenson RA; Thorn KA
    Ground Water; 2016 Sep; 54(5):681-691. PubMed ID: 27010754
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Does phosphate enhance the natural attenuation of crude oil in groundwater under defined redox conditions?
    Ponsin V; Mouloubou OR; Prudent P; Höhener P
    J Contam Hydrol; 2014 Nov; 169():4-18. PubMed ID: 24795042
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Crude-oil biodegradation via methanogenesis in subsurface petroleum reservoirs.
    Jones DM; Head IM; Gray ND; Adams JJ; Rowan AK; Aitken CM; Bennett B; Huang H; Brown A; Bowler BF; Oldenburg T; Erdmann M; Larter SR
    Nature; 2008 Jan; 451(7175):176-80. PubMed ID: 18075503
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Methane bioattenuation and implications for explosion risk reduction along the groundwater to soil surface pathway above a plume of dissolved ethanol.
    Ma J; Rixey WG; DeVaull GE; Stafford BP; Alvarez PJ
    Environ Sci Technol; 2012 Jun; 46(11):6013-9. PubMed ID: 22568485
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.