BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

96 related articles for article (PubMed ID: 26409193)

  • 1. Cytotoxicity of chitosan/streptokinase nanoparticles as a function of size: An artificial neural networks study.
    Baharifar H; Amani A
    Nanomedicine; 2016 Jan; 12(1):171-80. PubMed ID: 26409193
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effects of processing parameters on particle size of ultrasound prepared chitosan nanoparticles: an Artificial Neural Networks Study.
    Esmaeilzadeh-Gharedaghi E; Faramarzi MA; Amini MA; Rouholamini Najafabadi A; Rezayat SM; Amani A
    Pharm Dev Technol; 2012; 17(5):638-47. PubMed ID: 22681416
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Size, Loading Efficiency, and Cytotoxicity of Albumin-Loaded Chitosan Nanoparticles: An Artificial Neural Networks Study.
    Baharifar H; Amani A
    J Pharm Sci; 2017 Jan; 106(1):411-417. PubMed ID: 27866686
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Optimization of Self-Assembled Chitosan/Streptokinase Nanoparticles and Evaluation of Their Cytotoxicity and Thrombolytic Activity.
    Baharifar H; Tavoosidana G; Karimi R; Bidgoli SA; Ghanbari H; Faramarzi MA; Amani A
    J Nanosci Nanotechnol; 2015 Dec; 15(12):10127-33. PubMed ID: 26682458
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Processing/formulation parameters determining dispersity of chitosan particles: an ANNs study.
    Esmaeilzadeh-Gharehdaghi E; Faramarzi MA; Amini MA; Moazeni E; Amani A
    J Microencapsul; 2014; 31(1):77-85. PubMed ID: 23795904
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Use of artificial neural networks to examine parameters affecting the immobilization of streptokinase in chitosan.
    Modaresi SM; Faramarzi MA; Soltani A; Baharifar H; Amani A
    Iran J Pharm Res; 2014; 13(4):1379-86. PubMed ID: 25587327
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Relevance of the colloidal stability of chitosan/PLGA nanoparticles on their cytotoxicity profile.
    Nafee N; Schneider M; Schaefer UF; Lehr CM
    Int J Pharm; 2009 Nov; 381(2):130-9. PubMed ID: 19450671
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Application of artificial neural networks for optimization of preparation of insulin nanoparticles composed of quaternized aromatic derivatives of chitosan.
    Shahsavari Sh; Bagheri G; Mahjub R; Bagheri R; Radmehr M; Rafiee-Tehrani M; Dorkoosh FA
    Drug Res (Stuttg); 2014 Mar; 64(3):151-8. PubMed ID: 24002926
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Deep Insight into PEGylation of Bioadhesive Chitosan Nanoparticles: Sensitivity Study for the Key Parameters Through Artificial Neural Network Model.
    Bozuyuk U; Dogan NO; Kizilel S
    ACS Appl Mater Interfaces; 2018 Oct; 10(40):33945-33955. PubMed ID: 30212622
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Chitosan N-betainates/DNA self-assembly nanoparticles for gene delivery: in vitro uptake and transfection efficiency.
    Gao Y; Zhang Z; Chen L; Gu W; Li Y
    Int J Pharm; 2009 Apr; 371(1-2):156-62. PubMed ID: 19135139
    [TBL] [Abstract][Full Text] [Related]  

  • 11. In situ synthesized novel biocompatible titania-chitosan nanocomposites with high surface area and antibacterial activity.
    Kavitha K; Sutha S; Prabhu M; Rajendran V; Jayakumar T
    Carbohydr Polym; 2013 Apr; 93(2):731-9. PubMed ID: 23499117
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Determination of factors controlling the particle size in nanoemulsions using Artificial Neural Networks.
    Amani A; York P; Chrystyn H; Clark BJ; Do DQ
    Eur J Pharm Sci; 2008 Sep; 35(1-2):42-51. PubMed ID: 18617002
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Assessing toxicity of fine and nanoparticles: comparing in vitro measurements to in vivo pulmonary toxicity profiles.
    Sayes CM; Reed KL; Warheit DB
    Toxicol Sci; 2007 May; 97(1):163-80. PubMed ID: 17301066
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Size Control in the Nanoprecipitation Process of Stable Iodine (¹²⁷I) Using Microchannel Reactor-Optimization by Artificial Neural Networks.
    Aghajani MH; Pashazadeh AM; Mostafavi SH; Abbasi S; Hajibagheri-Fard MJ; Assadi M; Aghajani M
    AAPS PharmSciTech; 2015 Oct; 16(5):1059-68. PubMed ID: 25652731
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Lineage-related and particle size-dependent cytotoxicity of chitosan nanoparticles on mouse bone marrow-derived hematopoietic stem and progenitor cells.
    Omar Zaki SS; Katas H; Hamid ZA
    Food Chem Toxicol; 2015 Nov; 85():31-44. PubMed ID: 26051352
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Chitosan-lignosulfonates sono-chemically prepared nanoparticles: characterisation and potential applications.
    Kim S; Fernandes MM; Matamá T; Loureiro A; Gomes AC; Cavaco-Paulo A
    Colloids Surf B Biointerfaces; 2013 Mar; 103():1-8. PubMed ID: 23178385
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Particle size modeling and morphology study of chitosan/gelatin/nanohydroxyapatite nanocomposite microspheres for bone tissue engineering.
    Bagheri-Khoulenjani S; Mirzadeh H; Etrati-Khosroshahi M; Shokrgozar MA
    J Biomed Mater Res A; 2013 Jun; 101(6):1758-67. PubMed ID: 23184337
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Cell outer membrane mimetic chitosan nanoparticles: preparation, characterization and cytotoxicity.
    Zhao J; Liang F; Kong L; Zheng L; Fan T
    J Biomater Sci Polym Ed; 2015; 26(15):1067-83. PubMed ID: 26230052
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effect of preparation parameters on ultra low molecular weight chitosan/hyaluronic acid nanoparticles.
    Nazeri N; Avadi MR; Faramarzi MA; Safarian S; Tavoosidana G; Khoshayand MR; Amani A
    Int J Biol Macromol; 2013 Nov; 62():642-6. PubMed ID: 24099942
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Cytotoxicity of monodispersed chitosan nanoparticles against the Caco-2 cells.
    Loh JW; Saunders M; Lim LY
    Toxicol Appl Pharmacol; 2012 Aug; 262(3):273-82. PubMed ID: 22609640
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.