These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

166 related articles for article (PubMed ID: 26409336)

  • 61. Mental chronometry and mental rotation abilities in stroke patients with different degrees of sensory deficit.
    Liepert J; Büsching I; Sehle A; Schoenfeld MA
    Restor Neurol Neurosci; 2016 Nov; 34(6):907-914. PubMed ID: 27689548
    [TBL] [Abstract][Full Text] [Related]  

  • 62. Cortical lateralization in stroke patients measured by event‑related potentials during motor imagery.
    Gong W; Zhang T; Shan L
    Mol Med Rep; 2013 Dec; 8(6):1701-7. PubMed ID: 24068340
    [TBL] [Abstract][Full Text] [Related]  

  • 63. Cortical reorganization after motor imagery training in chronic stroke patients with severe motor impairment: a longitudinal fMRI study.
    Sun L; Yin D; Zhu Y; Fan M; Zang L; Wu Y; Jia J; Bai Y; Zhu B; Hu Y
    Neuroradiology; 2013 Jul; 55(7):913-25. PubMed ID: 23619700
    [TBL] [Abstract][Full Text] [Related]  

  • 64. Identification of multiple nonprimary motor cortical areas with simple movements.
    Kollias SS; Alkadhi H; Jaermann T; Crelier G; Hepp-Reymond MC
    Brain Res Brain Res Rev; 2001 Oct; 36(2-3):185-95. PubMed ID: 11690615
    [TBL] [Abstract][Full Text] [Related]  

  • 65. Motor imagery during movement activates the brain more than movement alone after stroke: a pilot study.
    Dodakian L; Campbell Stewart J; Cramer SC
    J Rehabil Med; 2014 Oct; 46(9):843-8. PubMed ID: 25182189
    [TBL] [Abstract][Full Text] [Related]  

  • 66. Brain Function and Upper Limb Deficit in Stroke With Motor Execution and Imagery: A Cross-Sectional Functional Magnetic Resonance Imaging Study.
    Ma ZZ; Wu JJ; Hua XY; Zheng MX; Xing XX; Ma J; Li SS; Shan CL; Xu JG
    Front Neurosci; 2022; 16():806406. PubMed ID: 35663563
    [TBL] [Abstract][Full Text] [Related]  

  • 67. A Cortical Parcellation Based Analysis of Ventral Premotor Area Connectivity.
    Sheets JR; Briggs RG; Dadario NB; Young IM; Bai MY; Poologaindran A; Baker CM; Conner AK; Sughrue ME
    Neurol Res; 2021 Jul; 43(7):595-607. PubMed ID: 33749536
    [No Abstract]   [Full Text] [Related]  

  • 68. Effectiveness of motor imagery or mental practice in functional recovery after stroke: a systematic review.
    García Carrasco D; Aboitiz Cantalapiedra J
    Neurologia; 2016; 31(1):43-52. PubMed ID: 23601759
    [TBL] [Abstract][Full Text] [Related]  

  • 69. Recovery of motor imagery ability in the first year after stroke.
    Feenstra W; Tepper M; Boonstra AM; Otten B; de Vries S
    Int J Rehabil Res; 2016 Jun; 39(2):171-5. PubMed ID: 26963641
    [TBL] [Abstract][Full Text] [Related]  

  • 70. Mapping the involvement of BA 4a and 4p during Motor Imagery.
    Sharma N; Jones PS; Carpenter TA; Baron JC
    Neuroimage; 2008 May; 41(1):92-9. PubMed ID: 18358742
    [TBL] [Abstract][Full Text] [Related]  

  • 71. Motor imagery cognitive network after left ischemic stroke: study of the patients during mental rotation task.
    Yan J; Sun J; Guo X; Jin Z; Li Y; Li Z; Tong S
    PLoS One; 2013; 8(10):e77325. PubMed ID: 24167569
    [TBL] [Abstract][Full Text] [Related]  

  • 72. Cognitive alterations in motor imagery process after left hemispheric ischemic stroke.
    Yan J; Guo X; Jin Z; Sun J; Shen L; Tong S
    PLoS One; 2012; 7(8):e42922. PubMed ID: 22912763
    [TBL] [Abstract][Full Text] [Related]  

  • 73. Improvement in precision grip force control with self-modulation of primary motor cortex during motor imagery.
    Blefari ML; Sulzer J; Hepp-Reymond MC; Kollias S; Gassert R
    Front Behav Neurosci; 2015; 9():18. PubMed ID: 25762907
    [TBL] [Abstract][Full Text] [Related]  

  • 74. Expertise-Level-Dependent Functionally Plastic Changes During Motor Imagery in Basketball Players.
    Zhang LL; Pi YL; Shen C; Zhu H; Li XP; Ni Z; Zhang J; Wu Y
    Neuroscience; 2018 Jun; 380():78-89. PubMed ID: 29634999
    [TBL] [Abstract][Full Text] [Related]  

  • 75. Motor Imagery-Based Rehabilitation: Potential Neural Correlates and Clinical Application for Functional Recovery of Motor Deficits after Stroke.
    Tong Y; Pendy JT; Li WA; Du H; Zhang T; Geng X; Ding Y
    Aging Dis; 2017 May; 8(3):364-371. PubMed ID: 28580191
    [TBL] [Abstract][Full Text] [Related]  

  • 76. Short time sports exercise boosts motor imagery patterns: implications of mental practice in rehabilitation programs.
    Wriessnegger SC; Steyrl D; Koschutnig K; Müller-Putz GR
    Front Hum Neurosci; 2014; 8():469. PubMed ID: 25071505
    [TBL] [Abstract][Full Text] [Related]  

  • 77. Effects of the multisensory rehabilitation product for home-based hand training after stroke on cortical activation by using NIRS methods.
    Li Q; Feng J; Guo J; Wang Z; Li P; Liu H; Fan Z
    Neurosci Lett; 2020 Jan; 717():134682. PubMed ID: 31837442
    [TBL] [Abstract][Full Text] [Related]  

  • 78. Organization of the human motor system as studied by functional magnetic resonance imaging.
    Mattay VS; Weinberger DR
    Eur J Radiol; 1999 May; 30(2):105-14. PubMed ID: 10401591
    [TBL] [Abstract][Full Text] [Related]  

  • 79. Recognizable rehabilitation movements of multiple unilateral upper limb: An fMRI study of motor execution and motor imagery.
    Ma J; Yang B; Qiu W; Zhang J; Yan L; Wang W
    J Neurosci Methods; 2023 May; 392():109861. PubMed ID: 37075914
    [TBL] [Abstract][Full Text] [Related]  

  • 80. Do Motor Imagery Performances Depend on the Side of the Lesion at the Acute Stage of Stroke?
    Kemlin C; Moulton E; Samson Y; Rosso C
    Front Hum Neurosci; 2016; 10():321. PubMed ID: 27445761
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.