These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

353 related articles for article (PubMed ID: 26409509)

  • 1. Auxetic polymeric bone plate as internal fixator for long bone fractures: Design, fabrication and structural analysis.
    Mehmood S; Ali MN; Ansari U; Mir M; Khan MA
    Technol Health Care; 2015; 23(6):819-33. PubMed ID: 26409509
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Biomechanical and biological aspects of defect treatment in fractures using helical plates.
    Perren SM; Regazzoni P; Fernandez AA
    Acta Chir Orthop Traumatol Cech; 2014; 81(4):267-71. PubMed ID: 25137496
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Biomechanical and histological evaluation of the application of biodegradable poly-L-lactic cushion to the plate internal fixation for bone fracture healing.
    Fan Y; Xiu K; Duan H; Zhang M
    Clin Biomech (Bristol, Avon); 2008; 23 Suppl 1():S7-S16. PubMed ID: 18291564
    [TBL] [Abstract][Full Text] [Related]  

  • 4. [Biological internal fixation -- guidelines for the rehabilitation].
    Gautier E; Sommer Ch
    Ther Umsch; 2003 Dec; 60(12):729-35. PubMed ID: 14753151
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Less rigid internal fixation plates: historical perspectives and new concepts.
    Woo SL; Lothringer KS; Akeson WH; Coutts RD; Woo YK; Simon BR; Gomez MA
    J Orthop Res; 1984; 1(4):431-49. PubMed ID: 6491792
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Assessment of carbon fibre composite fracture fixation plate using finite element analysis.
    Saidpour SH
    Ann Biomed Eng; 2006 Jul; 34(7):1157-63. PubMed ID: 16732432
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Internal plate fixation of fractures: short history and recent developments.
    Uhthoff HK; Poitras P; Backman DS
    J Orthop Sci; 2006 Mar; 11(2):118-26. PubMed ID: 16568382
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Biomechanics of bone-fracture fixation by stiffness-graded plates in comparison with stainless-steel plates.
    Ganesh VK; Ramakrishna K; Ghista DN
    Biomed Eng Online; 2005 Jul; 4():46. PubMed ID: 16045807
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Internal fixation of dorsally displaced fractures of the distal part of the radius. A biomechanical analysis of volar plate fracture stability.
    Willis AA; Kutsumi K; Zobitz ME; Cooney WP
    J Bone Joint Surg Am; 2006 Nov; 88(11):2411-7. PubMed ID: 17079398
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Evolution of the internal fixation of long bone fractures. The scientific basis of biological internal fixation: choosing a new balance between stability and biology.
    Perren SM
    J Bone Joint Surg Br; 2002 Nov; 84(8):1093-110. PubMed ID: 12463652
    [TBL] [Abstract][Full Text] [Related]  

  • 11. On optimization of a composite bone plate using the selective stress shielding approach.
    Samiezadeh S; Tavakkoli Avval P; Fawaz Z; Bougherara H
    J Mech Behav Biomed Mater; 2015 Feb; 42():138-53. PubMed ID: 25482217
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Primary stability of an intramedullary calcaneal nail and an angular stable calcaneal plate in a biomechanical testing model of intraarticular calcaneal fracture.
    Goldzak M; Simon P; Mittlmeier T; Chaussemier M; Chiergatti R
    Injury; 2014 Jan; 45 Suppl 1():S49-53. PubMed ID: 24219899
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Biomechanical comparison of 4 different lateral plate constructs for distal fibula fractures.
    Eckel TT; Glisson RR; Anand P; Parekh SG
    Foot Ankle Int; 2013 Nov; 34(11):1588-95. PubMed ID: 23818460
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Biomechanical analysis of a new carbon fiber/flax/epoxy bone fracture plate shows less stress shielding compared to a standard clinical metal plate.
    Bagheri ZS; Tavakkoli Avval P; Bougherara H; Aziz MS; Schemitsch EH; Zdero R
    J Biomech Eng; 2014 Sep; 136(9):091002. PubMed ID: 24828985
    [TBL] [Abstract][Full Text] [Related]  

  • 15. [Experimental studies on "less rigid" polyacetal plates for fracture fixation (author's transl)].
    Kusunose K
    Nihon Seikeigeka Gakkai Zasshi; 1982 May; 56(5):399-414. PubMed ID: 7108319
    [TBL] [Abstract][Full Text] [Related]  

  • 16. In Vitro Mechanical Analysis of Different Techniques of Internal Fixation of Combined Mandibular Angle and Body Fractures.
    de Medeiros RC; Sigua EA; Navarro P; Olate S; Albergaria Barbosa JR
    J Oral Maxillofac Surg; 2016 Apr; 74(4):778-85. PubMed ID: 26701138
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A mechanical comparison of the locking compression plate (LCP) and the low contact-dynamic compression plate (DCP) in an osteoporotic bone model.
    Snow M; Thompson G; Turner PG
    J Orthop Trauma; 2008 Feb; 22(2):121-5. PubMed ID: 18349780
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A comparative biomechanical evaluation of mandibular condyle fracture plating techniques.
    Asprino L; Consani S; de Moraes M
    J Oral Maxillofac Surg; 2006 Mar; 64(3):452-6. PubMed ID: 16487808
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A biomechanical comparison of one-third tubular plates versus periarticular plates for fixation of osteoporotic distal fibula fractures.
    Davis AT; Israel H; Cannada LK; Bledsoe JG
    J Orthop Trauma; 2013 Sep; 27(9):e201-7. PubMed ID: 23249893
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Biomechanical considerations in plate osteosynthesis: the effect of plate-to-bone compression with and without angular screw stability.
    Stoffel K; Lorenz KU; Kuster MS
    J Orthop Trauma; 2007 Jul; 21(6):362-8. PubMed ID: 17620993
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 18.