These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

153 related articles for article (PubMed ID: 26409541)

  • 1. Developing a portable gait cycle detection system using an inertial sensor and evaluating the accuracy of the gait cycle detection.
    Park MH; Kwak KY; Kim DW
    Technol Health Care; 2015; 24 Suppl 1():S69-76. PubMed ID: 26409541
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Consistent accuracy in whole-body joint kinetics during gait using wearable inertial motion sensors and in-shoe pressure sensors.
    Khurelbaatar T; Kim K; Lee S; Kim YH
    Gait Posture; 2015 Jun; 42(1):65-9. PubMed ID: 25957652
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The use of accelerometers and gyroscopes to estimate hip and knee angles on gait analysis.
    Alonge F; Cucco E; D'Ippolito F; Pulizzotto A
    Sensors (Basel); 2014 May; 14(5):8430-46. PubMed ID: 24828578
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Gait and balance analysis for patients with Alzheimer's disease using an inertial-sensor-based wearable instrument.
    Hsu YL; Chung PC; Wang WH; Pai MC; Wang CY; Lin CW; Wu HL; Wang JS
    IEEE J Biomed Health Inform; 2014 Nov; 18(6):1822-30. PubMed ID: 25375679
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Accuracy of a custom physical activity and knee angle measurement sensor system for patients with neuromuscular disorders and gait abnormalities.
    Feldhege F; Mau-Moeller A; Lindner T; Hein A; Markschies A; Zettl UK; Bader R
    Sensors (Basel); 2015 May; 15(5):10734-52. PubMed ID: 25954954
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Gait cycle spectrogram analysis using a torso-attached inertial sensor.
    Yuwono M; Su SW; Moulton BD; Nguyen HT
    Annu Int Conf IEEE Eng Med Biol Soc; 2012; 2012():6539-42. PubMed ID: 23367427
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Preliminary study on verifying the detection of gait intention based on knee joint anterior displacement of gait slopes.
    Yu C; Kang SR; Yang G; Hong CU; Lee HJ; Oh DY; Kwon TK
    Biomed Mater Eng; 2015; 26 Suppl 1():S583-92. PubMed ID: 26406052
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Support vector machine for classification of walking conditions of persons after stroke with dropped foot.
    Lau HY; Tong KY; Zhu H
    Hum Mov Sci; 2009 Aug; 28(4):504-14. PubMed ID: 19428134
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Quantification of inertial sensor-based 3D joint angle measurement accuracy using an instrumented gimbal.
    Brennan A; Zhang J; Deluzio K; Li Q
    Gait Posture; 2011 Jul; 34(3):320-3. PubMed ID: 21715167
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Inertial sensing algorithms for long-term foot angle monitoring for assessment of idiopathic toe-walking.
    Chalmers E; Le J; Sukhdeep D; Watt J; Andersen J; Lou E
    Gait Posture; 2014; 39(1):485-9. PubMed ID: 24050952
    [TBL] [Abstract][Full Text] [Related]  

  • 11. An Ambulatory Gait Monitoring System with Activity Classification and Gait Parameter Calculation Based on a Single Foot Inertial Sensor.
    Song M; Kim J
    IEEE Trans Biomed Eng; 2018 Apr; 65(4):885-893. PubMed ID: 28708542
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A wireless trigger for synchronization of wearable sensors to external systems during recording of human gait.
    Kugler P; Schlarb H; Blinn J; Picard A; Eskofier B
    Annu Int Conf IEEE Eng Med Biol Soc; 2012; 2012():4537-40. PubMed ID: 23366937
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Pedestrian navigation based on a waist-worn inertial sensor.
    Alvarez JC; Alvarez D; López A; González RC
    Sensors (Basel); 2012; 12(8):10536-49. PubMed ID: 23112614
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Novel approach to ambulatory assessment of human segmental orientation on a wearable sensor system.
    Liu K; Liu T; Shibata K; Inoue Y; Zheng R
    J Biomech; 2009 Dec; 42(16):2747-52. PubMed ID: 19748624
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Tests of wireless wearable sensor system in joint angle measurement of lower limbs.
    Watanabe T; Saito H
    Annu Int Conf IEEE Eng Med Biol Soc; 2011; 2011():5469-72. PubMed ID: 22255575
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Toward Pervasive Gait Analysis With Wearable Sensors: A Systematic Review.
    Chen S; Lach J; Lo B; Yang GZ
    IEEE J Biomed Health Inform; 2016 Nov; 20(6):1521-1537. PubMed ID: 28113185
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Estimating bradykinesia severity in Parkinson's disease by analysing gait through a waist-worn sensor.
    Samà A; Pérez-López C; Rodríguez-Martín D; Català A; Moreno-Aróstegui JM; Cabestany J; de Mingo E; Rodríguez-Molinero A
    Comput Biol Med; 2017 May; 84():114-123. PubMed ID: 28351715
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Shoe-integrated sensors in physical rehabilitation.
    Viqueira Villarejo M; García Zapirain B; Méndez Zorrilla A
    Biomed Mater Eng; 2014; 24(6):3523-8. PubMed ID: 25227065
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A new way of assessing arm function in activity using kinematic Exposure Variation Analysis and portable inertial sensors--A validity study.
    Ertzgaard P; Öhberg F; Gerdle B; Grip H
    Man Ther; 2016 Feb; 21():241-9. PubMed ID: 26456185
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Quasi real-time gait event detection using shank-attached gyroscopes.
    Lee JK; Park EJ
    Med Biol Eng Comput; 2011 Jun; 49(6):707-12. PubMed ID: 21267666
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.