These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

229 related articles for article (PubMed ID: 26409543)

  • 1. Development of a novel haptic glove for improving finger dexterity in poststroke rehabilitation.
    Lin CY; Tsai CM; Shih PC; Wu HC
    Technol Health Care; 2015; 24 Suppl 1():S97-103. PubMed ID: 26409543
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Training finger individuation with a mechatronic-virtual reality system leads to improved fine motor control post-stroke.
    Thielbar KO; Lord TJ; Fischer HC; Lazzaro EC; Barth KC; Stoykov ME; Triandafilou KM; Kamper DG
    J Neuroeng Rehabil; 2014 Dec; 11():171. PubMed ID: 25542201
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Overall design and implementation of the virtual glove.
    Placidi G; Avola D; Iacoviello D; Cinque L
    Comput Biol Med; 2013 Nov; 43(11):1927-40. PubMed ID: 24209938
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Hand rehabilitation using MIDI keyboard playing in adolescents with brain damage: a preliminary study.
    Chong HJ; Cho SR; Kim SJ
    NeuroRehabilitation; 2014; 34(1):147-55. PubMed ID: 24270322
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A Platform for Rehabilitation of Finger Individuation in Children with Hemiplegic Cerebral Palsy.
    McCall JV; Ludovice MC; Blaylock JA; Kamper DG
    IEEE Int Conf Rehabil Robot; 2019 Jun; 2019():343-348. PubMed ID: 31374653
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Novel virtual reality system integrating online self-face viewing and mirror visual feedback for stroke rehabilitation: rationale and feasibility.
    Shiri S; Feintuch U; Lorber-Haddad A; Moreh E; Twito D; Tuchner-Arieli M; Meiner Z
    Top Stroke Rehabil; 2012; 19(4):277-86. PubMed ID: 22750957
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The potential effect of a vibrotactile glove rehabilitation system on motor recovery in chronic post-stroke hemiparesis.
    Wu HC; Liao YC; Cheng YH; Shih PC; Tsai CM; Lin CY
    Technol Health Care; 2017 Dec; 25(6):1183-1187. PubMed ID: 28946600
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Virtual reality-enhanced stroke rehabilitation.
    Jack D; Boian R; Merians AS; Tremaine M; Burdea GC; Adamovich SV; Recce M; Poizner H
    IEEE Trans Neural Syst Rehabil Eng; 2001 Sep; 9(3):308-18. PubMed ID: 11561668
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Virtual reality-augmented rehabilitation for patients following stroke.
    Merians AS; Jack D; Boian R; Tremaine M; Burdea GC; Adamovich SV; Recce M; Poizner H
    Phys Ther; 2002 Sep; 82(9):898-915. PubMed ID: 12201804
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Soft Robotic Glove with Sensing and Force Feedback for Rehabilitation in Virtual Reality.
    Li F; Chen J; Ye G; Dong S; Gao Z; Zhou Y
    Biomimetics (Basel); 2023 Feb; 8(1):. PubMed ID: 36810414
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Development of a portable actuated orthotic glove to facilitate gross extension of the digits for therapeutic training after stroke.
    Ochoa J; Dev Narasimhan YJ; Kamper DG
    Annu Int Conf IEEE Eng Med Biol Soc; 2009; 2009():6918-21. PubMed ID: 19964456
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Wearable vibrotactile stimulation for upper extremity rehabilitation in chronic stroke: clinical feasibility trial using the VTS Glove.
    Seim CE; Wolf SL; Starner TE
    J Neuroeng Rehabil; 2021 Jan; 18(1):14. PubMed ID: 33485371
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Assessment and training in a 3-dimensional virtual environment with haptics: a report on 5 cases of motor rehabilitation in the chronic stage after stroke.
    Broeren J; Rydmark M; Björkdahl A; Sunnerhagen KS
    Neurorehabil Neural Repair; 2007; 21(2):180-9. PubMed ID: 17312093
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Usability evaluation of low-cost virtual reality hand and arm rehabilitation games.
    Seo NJ; Arun Kumar J; Hur P; Crocher V; Motawar B; Lakshminarayanan K
    J Rehabil Res Dev; 2016; 53(3):321-34. PubMed ID: 27271199
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effects of electromyography-driven robot-aided hand training with neuromuscular electrical stimulation on hand control performance after chronic stroke.
    Rong W; Tong KY; Hu XL; Ho SK
    Disabil Rehabil Assist Technol; 2015 Mar; 10(2):149-59. PubMed ID: 24377757
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Comparing the level of dexterity offered by latex and nitrile SafeSkin gloves.
    Sawyer J; Bennett A
    Ann Occup Hyg; 2006 Apr; 50(3):289-96. PubMed ID: 16357028
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Virtual reality and haptics as a training device for movement rehabilitation after stroke: a single-case study.
    Broeren J; Rydmark M; Sunnerhagen KS
    Arch Phys Med Rehabil; 2004 Aug; 85(8):1247-50. PubMed ID: 15295748
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Fine finger motor skill training with exoskeleton robotic hand in chronic stroke: stroke rehabilitation.
    Ockenfeld C; Tong RK; Susanto EA; Ho SK; Hu XL
    IEEE Int Conf Rehabil Robot; 2013 Jun; 2013():6650392. PubMed ID: 24187211
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effects of EVA glove on hand dexterity at low temperature and low pressure.
    Tian Y; Zhang H; Wang L; Ding L; Li D
    Appl Ergon; 2018 Jul; 70():98-103. PubMed ID: 29866331
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A soft robotic exomusculature glove with integrated sEMG sensing for hand rehabilitation.
    Delph MA; Fischer SA; Gauthier PW; Luna CH; Clancy EA; Fischer GS
    IEEE Int Conf Rehabil Robot; 2013 Jun; 2013():6650426. PubMed ID: 24187244
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.