These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

108 related articles for article (PubMed ID: 26409544)

  • 1. Development of wrist rehabilitation robot and interface system.
    Yamamoto I; Matsui M; Inagawa N; Hachisuka K; Wada F; Hachisuka A; Saeki S
    Technol Health Care; 2015; 24 Suppl 1():S27-32. PubMed ID: 26409544
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The effects of electromechanical wrist robot assistive system with neuromuscular electrical stimulation for stroke rehabilitation.
    Hu XL; Tong KY; Li R; Xue JJ; Ho SK; Chen P
    J Electromyogr Kinesiol; 2012 Jun; 22(3):431-9. PubMed ID: 22277205
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A comparison between electromyography-driven robot and passive motion device on wrist rehabilitation for chronic stroke.
    Hu XL; Tong KY; Song R; Zheng XJ; Leung WW
    Neurorehabil Neural Repair; 2009 Oct; 23(8):837-46. PubMed ID: 19531605
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Myoelectrically controlled wrist robot for stroke rehabilitation.
    Song R; Tong KY; Hu X; Zhou W
    J Neuroeng Rehabil; 2013 Jun; 10():52. PubMed ID: 23758925
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Research and development of compact wrist rehabilitation robot system.
    Yamamoto I; Inagawa N; Matsui M; Hachisuka K; Wada F; Hachisuka A
    Biomed Mater Eng; 2014; 24(1):123-8. PubMed ID: 24211891
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Post-stroke wrist rehabilitation assisted with an intention-driven functional electrical stimulation (FES)-robot system.
    Hu XL; Tong KY; Li R; Chen M; Xue JJ; Ho SK; Chen PN
    IEEE Int Conf Rehabil Robot; 2011; 2011():5975424. PubMed ID: 22275625
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Performance adaptive training control strategy for recovering wrist movements in stroke patients: a preliminary, feasibility study.
    Masia L; Casadio M; Giannoni P; Sandini G; Morasso P
    J Neuroeng Rehabil; 2009 Dec; 6():44. PubMed ID: 19968873
    [TBL] [Abstract][Full Text] [Related]  

  • 8. [Robot-aided training in rehabilitation].
    Hachisuka K
    Brain Nerve; 2010 Feb; 62(2):133-40. PubMed ID: 20192033
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The cybernetic rehabilitation aid: preliminary results for wrist and elbow motions in healthy subjects.
    Akdogan E; Shima K; Kataoka H; Hasegawa M; Otsuka A; Tsuji T
    IEEE Trans Neural Syst Rehabil Eng; 2012 Sep; 20(5):697-707. PubMed ID: 22695359
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Biomechanical changes of the wrist flexor and extensor tendons following loss of scaphoid integrity.
    Tang JB; Ryu J; Han JS; Omokawa S; Kish V; Wearden S
    J Orthop Res; 1997 Jan; 15(1):69-75. PubMed ID: 9066529
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Simulation of tremor on 3-dimentional musculoskeletal model of wrist joint and experimental verification?
    Yao P; Zhang D; Hayashibe M
    Annu Int Conf IEEE Eng Med Biol Soc; 2012; 2012():4823-6. PubMed ID: 23367007
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Co-contraction of the pronator teres and extensor carpi radialis during wrist extension movements in humans.
    Fujii H; Kobayashi S; Sato T; Shinozaki K; Naito A
    J Electromyogr Kinesiol; 2007 Feb; 17(1):80-9. PubMed ID: 16516494
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Wrist Rehabilitation Assisted by an Electromyography-Driven Neuromuscular Electrical Stimulation Robot After Stroke.
    Hu XL; Tong RK; Ho NS; Xue JJ; Rong W; Li LS
    Neurorehabil Neural Repair; 2015 Sep; 29(8):767-76. PubMed ID: 25549656
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Robotic Mirror Therapy System for Functional Recovery of Hemiplegic Arms.
    Beom J; Koh S; Nam HS; Kim W; Kim Y; Seo HG; Oh BM; Chung SG; Kim S
    J Vis Exp; 2016 Aug; (114):. PubMed ID: 27583794
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Research on an ankle rehabilitation robot for hemiplegic patients after stroke.
    Sun Z; Mu A; Wang C; Liu Q; Hao F; Wei J; Li W
    Proc Inst Mech Eng H; 2023 Oct; 237(10):1177-1189. PubMed ID: 37706474
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Follow-up motion laboratory analysis for patients with spastic hemiplegia due to cerebral palsy: analysis of the flexor carpi ulnaris firing pattern before and after tendon transfer surgery.
    Van Heest A; Stout J; Wervey R; Garcia L
    J Hand Surg Am; 2010 Feb; 35(2):284-90. PubMed ID: 20022711
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Wrist-RoboHab: a robot for treatment and evaluation of brain injury patients.
    Baniasad MA; Farahmand M; Ansari NN
    IEEE Int Conf Rehabil Robot; 2011; 2011():5975506. PubMed ID: 22275702
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Kinesthetic Feedback During 2DOF Wrist Movements via a Novel MR-Compatible Robot.
    Erwin A; O'Malley MK; Ress D; Sergi F
    IEEE Trans Neural Syst Rehabil Eng; 2017 Sep; 25(9):1489-1499. PubMed ID: 28114022
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Design and testing of a soft parallel robot based on pneumatic artificial muscles for wrist rehabilitation.
    Wang Y; Xu Q
    Sci Rep; 2021 Jan; 11(1):1273. PubMed ID: 33446771
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Evaluation and Verification of A Novel Wrist Rehabilitation Robot employing Safety-related Mechanism.
    Bae JH; Hwang SJ; Moon I
    IEEE Int Conf Rehabil Robot; 2019 Jun; 2019():288-293. PubMed ID: 31374644
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.