BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

394 related articles for article (PubMed ID: 26409545)

  • 21. Time-delay estimation based computed torque control with robust adaptive RBF neural network compensator for a rehabilitation exoskeleton.
    Han S; Wang H; Tian Y; Christov N
    ISA Trans; 2020 Feb; 97():171-181. PubMed ID: 31399252
    [TBL] [Abstract][Full Text] [Related]  

  • 22. A Multi-Mode Rehabilitation Robot With Magnetorheological Actuators Based on Human Motion Intention Estimation.
    Xu J; Li Y; Xu L; Peng C; Chen S; Liu J; Xu C; Cheng G; Xu H; Liu Y; Chen J
    IEEE Trans Neural Syst Rehabil Eng; 2019 Oct; 27(10):2216-2228. PubMed ID: 31443038
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Design of the Clutched Variable Parallel Elastic Actuator (CVPEA) for Lower Limb Exoskeletons.
    Li Y; Li Z; Penzlin B; Tang Z; Liu Y; Guan X; Ji L; Leonhardt S
    Annu Int Conf IEEE Eng Med Biol Soc; 2019 Jul; 2019():4436-4439. PubMed ID: 31946850
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Design of a lightweight, tethered, torque-controlled knee exoskeleton.
    Witte KA; Fatschel AM; Collins SH
    IEEE Int Conf Rehabil Robot; 2017 Jul; 2017():1646-1653. PubMed ID: 28814056
    [TBL] [Abstract][Full Text] [Related]  

  • 25. An experimental comparison of the relative benefits of work and torque assistance in ankle exoskeletons.
    Jackson RW; Collins SH
    J Appl Physiol (1985); 2015 Sep; 119(5):541-57. PubMed ID: 26159764
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Modeling and Control of a Cable-Driven Rotary Series Elastic Actuator for an Upper Limb Rehabilitation Robot.
    Zhang Q; Sun D; Qian W; Xiao X; Guo Z
    Front Neurorobot; 2020; 14():13. PubMed ID: 32161531
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Spring uses in exoskeleton actuation design.
    Wang S; van Dijk W; van der Kooij H
    IEEE Int Conf Rehabil Robot; 2011; 2011():5975471. PubMed ID: 22275669
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Design of a novel telerehabilitation system with a force-sensing mechanism.
    Zhang S; Guo S; Gao B; Hirata H; Ishihara H
    Sensors (Basel); 2015 May; 15(5):11511-27. PubMed ID: 25996511
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Design and analysis of a lower limb assistive exoskeleton robot.
    Li X; Wang KY; Yang ZY
    Technol Health Care; 2024; 32(S1):79-93. PubMed ID: 38759039
    [TBL] [Abstract][Full Text] [Related]  

  • 30. An advanced rehabilitation robotic system for augmenting healthcare.
    Hu J; Lim YJ; Ding Y; Paluska D; Solochek A; Laffery D; Bonato P; Marchessault R
    Annu Int Conf IEEE Eng Med Biol Soc; 2011; 2011():2073-6. PubMed ID: 22254745
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Design of a rotational hydroelastic actuator for a powered exoskeleton for upper limb rehabilitation.
    Stienenw AH; Hekman EE; ter Braak H; Aalsma AM; van der Helm FC; van der Kooij H
    IEEE Trans Biomed Eng; 2010 Mar; 57(3):728-35. PubMed ID: 19362903
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Application of EMG signals for controlling exoskeleton robots.
    Fleischer C; Wege A; Kondak K; Hommel G
    Biomed Tech (Berl); 2006 Dec; 51(5-6):314-9. PubMed ID: 17155866
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Initial Design and Experimental Evaluation of a Pneumatic Interference Actuator.
    Nesler CR; Swift TA; Rouse EJ
    Soft Robot; 2018 Apr; 5(2):138-148. PubMed ID: 29498580
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Design and Validation of a Lightweight Hip Exoskeleton Driven by Series Elastic Actuator With Two-Motor Variable Speed Transmission.
    Zhang T; Ning C; Li Y; Wang M
    IEEE Trans Neural Syst Rehabil Eng; 2022; 30():2456-2466. PubMed ID: 36001514
    [TBL] [Abstract][Full Text] [Related]  

  • 35. NEUROExos: A powered elbow orthosis for post-stroke early neurorehabilitation.
    Cempini M; Giovacchini F; Vitiello N; Cortese M; Moisé M; Posteraro F; Carrozza MC
    Annu Int Conf IEEE Eng Med Biol Soc; 2013; 2013():342-5. PubMed ID: 24109694
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Compact Hip-Force Sensor for a Gait-Assistance Exoskeleton System.
    Choi H; Seo K; Hyung S; Shim Y; Lim SC
    Sensors (Basel); 2018 Feb; 18(2):. PubMed ID: 29438300
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Preliminary Assessment of a Compliant Gait Exoskeleton.
    Cestari M; Sanz-Merodio D; Garcia E
    Soft Robot; 2017 Jun; 4(2):135-146. PubMed ID: 29182092
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Series-elastic actuator with two degree-of-freedom PID control improves torque control in a powered knee exoskeleton.
    Sarkisian SV; Gabert L; Lenzi T
    Wearable Technol; 2023; 4():e25. PubMed ID: 38510590
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Brief biomechanical analysis on the walking of spinal cord injury patients with a lower limb exoskeleton robot.
    Jung JY; Park H; Yang HD; Chae M
    IEEE Int Conf Rehabil Robot; 2013 Jun; 2013():6650351. PubMed ID: 24187170
    [TBL] [Abstract][Full Text] [Related]  

  • 40. More is not always better: modeling the effects of elastic exoskeleton compliance on underlying ankle muscle-tendon dynamics.
    Robertson BD; Farris DJ; Sawicki GS
    Bioinspir Biomim; 2014 Nov; 9(4):046018. PubMed ID: 25417578
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 20.