BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

625 related articles for article (PubMed ID: 26409895)

  • 1. Cotransport of hydroxyapatite nanoparticles and hematite colloids in saturated porous media: Mechanistic insights from mathematical modeling and phosphate oxygen isotope fractionation.
    Wang D; Jin Y; Jaisi DP
    J Contam Hydrol; 2015 Nov; 182():194-209. PubMed ID: 26409895
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effect of Size-Selective Retention on the Cotransport of Hydroxyapatite and Goethite Nanoparticles in Saturated Porous Media.
    Wang D; Jin Y; Jaisi DP
    Environ Sci Technol; 2015 Jul; 49(14):8461-70. PubMed ID: 26084013
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Transport of carboxyl-functionalized carbon black nanoparticles in saturated porous media: Column experiments and model analyses.
    Kang JK; Yi IG; Park JA; Kim SB; Kim H; Han Y; Kim PJ; Eom IC; Jo E
    J Contam Hydrol; 2015; 177-178():194-205. PubMed ID: 25977994
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Hyperexponential and nonmonotonic retention of polyvinylpyrrolidone-coated silver nanoparticles in an Ultisol.
    Wang D; Ge L; He J; Zhang W; Jaisi DP; Zhou D
    J Contam Hydrol; 2014 Aug; 164():35-48. PubMed ID: 24926609
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Cotransport of bismerthiazol and montmorillonite colloids in saturated porous media.
    Shen C; Wang H; Lazouskaya V; Du Y; Lu W; Wu J; Zhang H; Huang Y
    J Contam Hydrol; 2015; 177-178():18-29. PubMed ID: 25805364
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effects of myo-inositol hexakisphosphate, ferrihydrite coating, ionic strength and pH on the transport of TiO
    Tang Y; Wang X; Yan Y; Zeng H; Wang G; Tan W; Liu F; Feng X
    Environ Pollut; 2019 Sep; 252(Pt B):1193-1201. PubMed ID: 31252117
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Transport and retention of carbon dots (CDs) in saturated and unsaturated porous media: Role of ionic strength, pH, and collector grain size.
    Kamrani S; Rezaei M; Kord M; Baalousha M
    Water Res; 2018 Apr; 133():338-347. PubMed ID: 28864305
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Graphene oxide nanoparticles and hematite colloids behave oppositely in their co-transport in saturated porous media.
    Wang M; Zhang H; Chen W; Lu T; Yang H; Wang X; Lu M; Qi Z; Li D
    Chemosphere; 2021 Feb; 265():129081. PubMed ID: 33288283
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Size- and concentration-dependent deposition of fluorescent silica colloids in saturated sand columns: transport experiments and modeling.
    Vitorge E; Szenknect S; Martins JM; Gaudet JP
    Environ Sci Process Impacts; 2013 Aug; 15(8):1590-600. PubMed ID: 23812006
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Modeling the co-transport of viruses and colloids in unsaturated porous media.
    Seetha N; Mohan Kumar MS; Majid Hassanizadeh S
    J Contam Hydrol; 2015 Oct; 181():82-101. PubMed ID: 25681069
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Analytic solutions for colloid transport with time- and depth-dependent retention in porous media.
    Leij FJ; Bradford SA; Sciortino A
    J Contam Hydrol; 2016 Dec; 195():40-51. PubMed ID: 27890296
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Comparison of three labeled silica nanoparticles used as tracers in transport experiments in porous media. Part II: transport experiments and modeling.
    Vitorge E; Szenknect S; Martins JM; Barthès V; Gaudet JP
    Environ Pollut; 2014 Jan; 184():613-9. PubMed ID: 24051031
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Quantification of Heteroaggregation between Citrate-Stabilized Gold Nanoparticles and Hematite Colloids.
    Smith BM; Pike DJ; Kelly MO; Nason JA
    Environ Sci Technol; 2015 Nov; 49(21):12789-97. PubMed ID: 26444131
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Transport of barrel and spherical shaped colloids in unsaturated porous media.
    Knappenberger T; Aramrak S; Flury M
    J Contam Hydrol; 2015 Sep; 180():69-79. PubMed ID: 26275396
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Cotransport of bacteria with hematite in porous media: Effects of ion valence and humic acid.
    Yang H; Ge Z; Wu D; Tong M; Ni J
    Water Res; 2016 Jan; 88():586-594. PubMed ID: 26558710
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Influence of humic acid on transport, deposition and activity of lysozyme in quartz sand.
    Li Y; Koopal LK; Xiong J; Wang M; Yang C; Tan W
    Environ Pollut; 2018 Nov; 242(Pt A):298-306. PubMed ID: 29990937
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Humic acid facilitates the transport of ARS-labeled hydroxyapatite nanoparticles in iron oxyhydroxide-coated sand.
    Wang D; Bradford SA; Harvey RW; Gao B; Cang L; Zhou D
    Environ Sci Technol; 2012 Mar; 46(5):2738-45. PubMed ID: 22316080
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Experimental measurements and numerical simulations of the transport and retention of nanocrystal CdSe/ZnS quantum dots in saturated porous media: effects of pH, organic ligand, and natural organic matter.
    Li C; Hassan A; Palmai M; Xie Y; Snee PT; Powell BA; Murdoch LC; Darnault CJG
    Environ Sci Pollut Res Int; 2021 Feb; 28(7):8050-8073. PubMed ID: 33051847
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Enhanced retention of bacteria by TiO2 nanoparticles in saturated porous media.
    Gentile GJ; Fidalgo de Cortalezzi MM
    J Contam Hydrol; 2016 Aug; 191():66-75. PubMed ID: 27258326
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Aquasols: on the role of secondary minima.
    Hahn MW; Abadzic D; O'Melia CR
    Environ Sci Technol; 2004 Nov; 38(22):5915-24. PubMed ID: 15573589
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 32.