BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

233 related articles for article (PubMed ID: 26409933)

  • 21. Rhamnolipids production from sucrose by engineered Saccharomyces cerevisiae.
    Bahia FM; de Almeida GC; de Andrade LP; Campos CG; Queiroz LR; da Silva RLV; Abdelnur PV; Corrêa JR; Bettiga M; Parachin NS
    Sci Rep; 2018 Feb; 8(1):2905. PubMed ID: 29440668
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Engineering Pseudomonas for phenazine biosynthesis, regulation, and biotechnological applications: a review.
    Bilal M; Guo S; Iqbal HMN; Hu H; Wang W; Zhang X
    World J Microbiol Biotechnol; 2017 Oct; 33(10):191. PubMed ID: 28975557
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Proteomic based investigation of rhamnolipid production by Pseudomonas chlororaphis strain NRRL B-30761.
    Gunther NW; Nuñez A; Fortis L; Solaiman DK
    J Ind Microbiol Biotechnol; 2006 Nov; 33(11):914-20. PubMed ID: 16964509
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Engineering the biosynthesis of novel rhamnolipids in Escherichia coli for enhanced oil recovery.
    Han L; Liu P; Peng Y; Lin J; Wang Q; Ma Y
    J Appl Microbiol; 2014 Jul; 117(1):139-50. PubMed ID: 24703158
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Rhamnolipid biosurfactants: evolutionary implications, applications and future prospects from untapped marine resource.
    Kiran GS; Ninawe AS; Lipton AN; Pandian V; Selvin J
    Crit Rev Biotechnol; 2016; 36(3):399-415. PubMed ID: 25641324
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Genetic regulations of the biosynthesis of microbial surfactants: an overview.
    Das P; Mukherjee S; Sen R
    Biotechnol Genet Eng Rev; 2008; 25():165-85. PubMed ID: 21412355
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Analysis of rhamnolipid biosurfactants by methylene blue complexation.
    Pinzon NM; Ju LK
    Appl Microbiol Biotechnol; 2009 Apr; 82(5):975-81. PubMed ID: 19214498
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Biosynthesis of di-rhamnolipids and variations of congeners composition in genetically-engineered Escherichia coli.
    Du J; Zhang A; Hao J; Wang J
    Biotechnol Lett; 2017 Jul; 39(7):1041-1048. PubMed ID: 28374071
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Sustainable rhamnolipids production in the next decade - Advancing with Burkholderia thailandensis as a potent biocatalytic strain.
    Kumar R; Barbhuiya RI; Bohra V; Wong JWC; Singh A; Kaur G
    Microbiol Res; 2023 Jul; 272():127386. PubMed ID: 37094547
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Heterologous Rhamnolipid Biosynthesis: Advantages, Challenges, and the Opportunity to Produce Tailor-Made Rhamnolipids.
    Wittgens A; Rosenau F
    Front Bioeng Biotechnol; 2020; 8():594010. PubMed ID: 33195161
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Structural and physiochemical characterization of rhamnolipids produced by Acinetobacter calcoaceticus, Enterobacter asburiae and Pseudomonas aeruginosa in single strain and mixed cultures.
    Hošková M; Ježdík R; Schreiberová O; Chudoba J; Šír M; Čejková A; Masák J; Jirků V; Řezanka T
    J Biotechnol; 2015 Jan; 193():45-51. PubMed ID: 25433178
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Rhamnolipid surfactants: an update on the general aspects of these remarkable biomolecules.
    Nitschke M; Costa SG; Contiero J
    Biotechnol Prog; 2005; 21(6):1593-600. PubMed ID: 16321040
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Chloroplast engineering of the green microalgae Chlamydomonas reinhardtii for the production of HAA, the lipid moiety of rhamnolipid biosurfactants.
    Miró-Vinyals B; Artigues M; Wostrikoff K; Monte E; Broto-Puig F; Leivar P; Planas A
    N Biotechnol; 2023 Sep; 76():1-12. PubMed ID: 37004923
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Biotechnology of riboflavin.
    Schwechheimer SK; Park EY; Revuelta JL; Becker J; Wittmann C
    Appl Microbiol Biotechnol; 2016 Mar; 100(5):2107-19. PubMed ID: 26758294
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Producing cell-free culture broth of rhamnolipids as a cost-effective fungicide against plant pathogens.
    Sha R; Jiang L; Meng Q; Zhang G; Song Z
    J Basic Microbiol; 2012 Aug; 52(4):458-66. PubMed ID: 22052667
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Production of rhamnolipids by Pseudomonas aeruginosa is inhibited by H2S but resumes in a co-culture with P. stutzeri: applications for microbial enhanced oil recovery.
    Zhao F; Ma F; Shi R; Zhang J; Han S; Zhang Y
    Biotechnol Lett; 2015 Sep; 37(9):1803-8. PubMed ID: 25994582
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Heterologous production of resveratrol in bacterial hosts: current status and perspectives.
    Braga A; Ferreira P; Oliveira J; Rocha I; Faria N
    World J Microbiol Biotechnol; 2018 Jul; 34(8):122. PubMed ID: 30054757
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Novel technologies provide more engineering strategies for amino acid-producing microorganisms.
    Gu P; Su T; Qi Q
    Appl Microbiol Biotechnol; 2016 Mar; 100(5):2097-105. PubMed ID: 26754821
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Rhamnolipids from non-pathogenic Burkholderia thailandensis E264: Physicochemical characterization, antimicrobial and antibiofilm efficacy against oral hygiene related pathogens.
    Elshikh M; Funston S; Chebbi A; Ahmed S; Marchant R; Banat IM
    N Biotechnol; 2017 May; 36():26-36. PubMed ID: 28065676
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Production of microbial rhamnolipid by Pseudomonas aeruginosa MM1011 for ex situ enhanced oil recovery.
    Amani H; Müller MM; Syldatk C; Hausmann R
    Appl Biochem Biotechnol; 2013 Jul; 170(5):1080-93. PubMed ID: 23640261
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 12.