These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

103 related articles for article (PubMed ID: 26410494)

  • 1. Research on an anti-motion interference algorithm of blood oxygen saturation based on AC and DC analysis.
    Yan J; Bin G
    Technol Health Care; 2015; 23 Suppl 2():S285-91. PubMed ID: 26410494
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A motion-tolerant approach for monitoring SpO
    Fan F; Yan Y; Tang Y; Zhang H
    Comput Biol Med; 2017 Dec; 91():291-305. PubMed ID: 29102826
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Photoplethysmograph signal reconstruction based on a novel hybrid motion artifact detection-reduction approach. Part I: Motion and noise artifact detection.
    Chong JW; Dao DK; Salehizadeh SM; McManus DD; Darling CE; Chon KH; Mendelson Y
    Ann Biomed Eng; 2014 Nov; 42(11):2238-50. PubMed ID: 25092422
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Heart-rate tuned comb filters for processing photoplethysmogram (PPG) signals in pulse oximetry.
    Alkhoury L; Choi JW; Wang C; Rajasekar A; Acharya S; Mahoney S; Shender BS; Hrebien L; Kam M
    J Clin Monit Comput; 2021 Aug; 35(4):797-813. PubMed ID: 32556842
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Reduction of motion artifact in pulse oximetry by smoothed pseudo Wigner-Ville distribution.
    Yan YS; Poon CC; Zhang YT
    J Neuroeng Rehabil; 2005 Mar; 2(1):3. PubMed ID: 15737241
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Photoplethysmograph signal reconstruction based on a novel motion artifact detection-reduction approach. Part II: Motion and noise artifact removal.
    Salehizadeh SM; Dao DK; Chong JW; McManus D; Darling C; Mendelson Y; Chon KH
    Ann Biomed Eng; 2014 Nov; 42(11):2251-63. PubMed ID: 24823655
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A wrist worn SpO2 monitor with custom finger probe for motion artifact removal.
    Preejith SP; Ravindran AS; Hajare R; Joseph J; Sivaprakasam M
    Annu Int Conf IEEE Eng Med Biol Soc; 2016 Aug; 2016():5777-5780. PubMed ID: 28269567
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A Photoplethysmographic Signal Isolated From an Additive Motion Artifact by Frequency Translation.
    Sinchai S; Kainan P; Wardkein P; Koseeyaporn J
    IEEE Trans Biomed Circuits Syst; 2018 Aug; 12(4):904-917. PubMed ID: 29994775
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A motion-tolerant adaptive algorithm for wearable photoplethysmographic biosensors.
    Yousefi R; Nourani M; Ostadabbas S; Panahi I
    IEEE J Biomed Health Inform; 2014 Mar; 18(2):670-81. PubMed ID: 24608066
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Development of real-time motion artifact reduction algorithm for a wearable photoplethysmography.
    Han H; Kim MJ; Kim J
    Annu Int Conf IEEE Eng Med Biol Soc; 2007; 2007():1538-41. PubMed ID: 18002262
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A comb filter based signal processing method to effectively reduce motion artifacts from photoplethysmographic signals.
    Peng F; Liu H; Wang W
    Physiol Meas; 2015 Oct; 36(10):2159-70. PubMed ID: 26334000
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Reflectance forehead pulse oximetry: effects of contact pressure during walking.
    Dresher RP; Mendelson Y
    Conf Proc IEEE Eng Med Biol Soc; 2006; 2006():3529-32. PubMed ID: 17946185
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Motion Artifact Removal of Photoplethysmogram (PPG) Signal.
    Majeed IA; Jos S; Arora R; Choi K; Bae S
    Annu Int Conf IEEE Eng Med Biol Soc; 2019 Jul; 2019():5576-5580. PubMed ID: 31947119
    [TBL] [Abstract][Full Text] [Related]  

  • 14. [Study on resistance to motion artifact in pulse oximetry measurement using segment filter method].
    Li QB; Nie X; Zhang GJ; Wu JG
    Guang Pu Xue Yu Guang Pu Fen Xi; 2009 Nov; 29(11):2994-7. PubMed ID: 20101971
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Artifacts in wearable photoplethysmographs during daily life motions and their reduction with least mean square based active noise cancellation method.
    Han H; Kim J
    Comput Biol Med; 2012 Apr; 42(4):387-93. PubMed ID: 22206810
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Design Implementation and Evaluation of a Mobile Continuous Blood Oxygen Saturation Monitoring System.
    Zhang Q; Arney D; Goldman JM; Isselbacher EM; Armoundas AA
    Sensors (Basel); 2020 Nov; 20(22):. PubMed ID: 33217945
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Study of Artifact-Resistive Technology Based on a Novel Dual Photoplethysmography Method for Wearable Pulse Rate Monitors.
    Zhou C; Feng J; Hu J; Ye X
    J Med Syst; 2016 Mar; 40(3):56. PubMed ID: 26645320
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Reflective oxygen saturation monitoring at hypothenar and its validation by human hypoxia experiment.
    Guo T; Cao Z; Zhang Z; Li D; Yu M
    Biomed Eng Online; 2015 Aug; 14():76. PubMed ID: 26242309
    [TBL] [Abstract][Full Text] [Related]  

  • 19. In-ear vital signs monitoring using a novel microoptic reflective sensor.
    Vogel S; Hülsbusch M; Hennig T; Blazek V; Leonhardt S
    IEEE Trans Inf Technol Biomed; 2009 Nov; 13(6):882-9. PubMed ID: 19846385
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Analogue step-by-step DC component eliminator for 24-hour PPG signal monitoring.
    Pilt K; Meigas K; Lass J; Rosmann M; Kaik J
    Annu Int Conf IEEE Eng Med Biol Soc; 2007; 2007():1006-9. PubMed ID: 18002130
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.