BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

163 related articles for article (PubMed ID: 26410661)

  • 1. The feasibility of the auto tuning respiratory compensation system with ultrasonic image tracking technique.
    Chuang HC; Hsu HY; Nieh SK; Tien DC
    J Xray Sci Technol; 2015; 23(4):503-16. PubMed ID: 26410661
    [TBL] [Abstract][Full Text] [Related]  

  • 2. An autotuning respiration compensation system based on ultrasound image tracking.
    Kuo CC; Chuang HC; Teng KT; Hsu HY; Tien DC; Wu CJ; Jeng SC; Chiou JF
    J Xray Sci Technol; 2016 Nov; 24(6):875-892. PubMed ID: 27612051
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Adaptive control of phase leading compensator parameters applied to respiratory motion compensation system.
    Kuo CC; Chuang HC; Yu HW; Huang JW; Tien DC; Jeng SC; Chiou JF
    J Xray Sci Technol; 2019; 27(4):715-729. PubMed ID: 31227683
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Verification and compensation of respiratory motion using an ultrasound imaging system.
    Chuang HC; Hsu HY; Chiu WH; Tien DC; Wu RH; Hsu CH
    Med Phys; 2015 Mar; 42(3):1193-9. PubMed ID: 25735274
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Tracking and compensation of respiration pattern by an automatic compensation system.
    Ting LL; Chuang HC; Kuo CC; Jian LA; Huang MY; Liao AH; Tien DC; Jeng SC; Chiou JF
    Med Phys; 2017 Jun; 44(6):2077-2095. PubMed ID: 28370095
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Experimental verification of a two-dimensional respiratory motion compensation system with ultrasound tracking technique in radiation therapy.
    Ting LL; Chuang HC; Liao AH; Kuo CC; Yu HW; Zhou YL; Tien DC; Jeng SC; Chiou JF
    Phys Med; 2018 May; 49():11-18. PubMed ID: 29866336
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Fast Fourier transform combined with phase leading compensator for respiratory motion compensation system.
    Kuo CC; Chuang HC; Liao AH; Yu HW; Cai SR; Tien DC; Jeng SC; Chiou JF
    Quant Imaging Med Surg; 2020 May; 10(5):907-920. PubMed ID: 32489916
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A compensating system of respiratory motion for tumor tracking: design and verification.
    Chuang HC; Chiou CY; Tien DC; Huang DY; Wu RH; Hsu CH
    J Xray Sci Technol; 2012; 20(2):161-74. PubMed ID: 22635172
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Technical Note: Automatic real-time ultrasound tracking of respiratory signal using selective filtering and dynamic template matching.
    Wu J; Li C; Gogna A; Tan BS; Ooi LL; Liu J; Yu H
    Med Phys; 2015 Aug; 42(8):4536-41. PubMed ID: 26233182
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Adaptive prediction of respiratory motion for motion compensation radiotherapy.
    Ren Q; Nishioka S; Shirato H; Berbeco RI
    Phys Med Biol; 2007 Nov; 52(22):6651-61. PubMed ID: 17975289
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Preliminary results on the feasibility of using ultrasound to monitor intrafractional motion during radiation therapy for pancreatic cancer.
    Omari EA; Erickson B; Ehlers C; Quiroz F; Noid G; Cooper DT; Lachaine M; Li XA
    Med Phys; 2016 Sep; 43(9):5252. PubMed ID: 27587056
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Development of an in vitro diaphragm motion reproduction system.
    Liao AH; Chuang HC; Shih MC; Hsu HY; Tien DC; Kuo CC; Jeng SC; Chiou JF
    Phys Med; 2017 Jul; 39():39-49. PubMed ID: 28711187
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Tumor tracking method based on a deformable 4D CT breathing motion model driven by an external surface surrogate.
    Fassi A; Schaerer J; Fernandes M; Riboldi M; Sarrut D; Baroni G
    Int J Radiat Oncol Biol Phys; 2014 Jan; 88(1):182-8. PubMed ID: 24331665
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Robust motion tracking in liver from 2D ultrasound images using supporters.
    Ozkan E; Tanner C; Kastelic M; Mattausch O; Makhinya M; Goksel O
    Int J Comput Assist Radiol Surg; 2017 Jun; 12(6):941-950. PubMed ID: 28332160
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Respiratory motion correction for liver contrast-enhanced ultrasound by automatic selection of a reference image.
    Zhang J; Zhang Y; Chen J; Ling G; Wang X; Xu H
    Med Phys; 2019 Nov; 46(11):4992-5001. PubMed ID: 31444798
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A respiratory compensating system: design and performance evaluation.
    Chuang HC; Huang DY; Tien DC; Wu RH; Hsu CH
    J Appl Clin Med Phys; 2014 May; 15(3):4710. PubMed ID: 24892345
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A monoscopic method for real-time tumour tracking using combined occasional x-ray imaging and continuous respiratory monitoring.
    Cho B; Suh Y; Dieterich S; Keall PJ
    Phys Med Biol; 2008 Jun; 53(11):2837-55. PubMed ID: 18460750
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A technique for noninvasive respiratory gated radiation treatment system based on a real time 3D ultrasound image correlation: a phantom study.
    Sawada A; Yoda K; Kokubo M; Kunieda T; Nagata Y; Hiraoka M
    Med Phys; 2004 Feb; 31(2):245-50. PubMed ID: 15000610
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Ultrasound tracking for intra-fractional motion compensation in radiation therapy.
    Schwaab J; Prall M; Sarti C; Kaderka R; Bert C; Kurz C; Parodi K; Günther M; Jenne J
    Phys Med; 2014 Jul; 30(5):578-82. PubMed ID: 24695273
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Development and evaluation of ultrasound image tracking technology based on Mask R-CNN applied to respiratory motion compensation system.
    Ting LL; Guo ML; Liao AH; Cheng ST; Yu HW; Ramanathan S; Zhou H; Boominathan CM; Jeng SC; Chiou JF; Kuo CC; Chuang HC
    Quant Imaging Med Surg; 2023 Oct; 13(10):6827-6839. PubMed ID: 37869357
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.