These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
2. On the links between elastic constants and effective elastic behavior of pharmaceutical compacts: importance of poisson's ratio and use of bulk modulus. Mazel V; Busignies V; Diarra H; Tchoreloff P J Pharm Sci; 2013 Nov; 102(11):4009-14. PubMed ID: 23963744 [TBL] [Abstract][Full Text] [Related]
3. "Apparent" Young's elastic modulus and radial recovery for some tableted pharmaceutical excipients. Kachrimanis K; Malamataris S Eur J Pharm Sci; 2004 Feb; 21(2-3):197-207. PubMed ID: 14757491 [TBL] [Abstract][Full Text] [Related]
4. Non-destructive determination of anisotropic mechanical properties of pharmaceutical solid dosage forms. Akseli I; Hancock BC; Cetinkaya C Int J Pharm; 2009 Jul; 377(1-2):35-44. PubMed ID: 19426791 [TBL] [Abstract][Full Text] [Related]
5. Investigation and modelling approach of the mechanical properties of compacts made with binary mixtures of pharmaceutical excipients. Busignies V; Leclerc B; Porion P; Evesque P; Couarraze G; Tchoreloff P Eur J Pharm Biopharm; 2006 Aug; 64(1):51-65. PubMed ID: 16750353 [TBL] [Abstract][Full Text] [Related]
6. Comparative evaluation of silicified microcrystalline cellulose II as a direct compression vehicle. Rojas J; Kumar V Int J Pharm; 2011 Sep; 416(1):120-8. PubMed ID: 21708237 [TBL] [Abstract][Full Text] [Related]
7. Anisotropic porous structure of pharmaceutical compacts evaluated by PGSTE-NMR in relation to mechanical property anisotropy. Porion P; Busignies V; Mazel V; Leclerc B; Evesque P; Tchoreloff P Pharm Res; 2010 Oct; 27(10):2221-33. PubMed ID: 20697782 [TBL] [Abstract][Full Text] [Related]
8. On the role of API in determining porosity, pore structure and bulk modulus of the skeletal material in pharmaceutical tablets formed with MCC as sole excipient. Ridgway C; Bawuah P; Markl D; Zeitler JA; Ketolainen J; Peiponen KE; Gane P Int J Pharm; 2017 Jun; 526(1-2):321-331. PubMed ID: 28432018 [TBL] [Abstract][Full Text] [Related]
9. Predictive model for tensile strength of pharmaceutical tablets based on local hardness measurements. Juban A; Nouguier-Lehon C; Briancon S; Hoc T; Puel F Int J Pharm; 2015 Jul; 490(1-2):438-45. PubMed ID: 26043825 [TBL] [Abstract][Full Text] [Related]
10. Effect of Porosity on Strength Distribution of Microcrystalline Cellulose. Keleṣ Ö; Barcenas NP; Sprys DH; Bowman KJ AAPS PharmSciTech; 2015 Dec; 16(6):1455-64. PubMed ID: 26022545 [TBL] [Abstract][Full Text] [Related]
11. The impact of hot melt extrusion and spray drying on mechanical properties and tableting indices of materials used in pharmaceutical development. Iyer R; Hegde S; Zhang YE; Dinunzio J; Singhal D; Malick A; Amidon G J Pharm Sci; 2013 Oct; 102(10):3604-13. PubMed ID: 23955277 [TBL] [Abstract][Full Text] [Related]
12. The mechanical properties of compacts of microcrystalline cellulose and silicified microcrystalline cellulose. Edge S; Steele DF; Chen A; Tobyn MJ; Staniforth JN Int J Pharm; 2000 Apr; 200(1):67-72. PubMed ID: 10845687 [TBL] [Abstract][Full Text] [Related]
13. Measurements of elastic moduli of pharmaceutical compacts: a new methodology using double compaction on a compaction simulator. Mazel V; Busignies V; Diarra H; Tchoreloff P J Pharm Sci; 2012 Jun; 101(6):2220-8. PubMed ID: 22430162 [TBL] [Abstract][Full Text] [Related]
14. Micro-scale measurement of the mechanical properties of compressed pharmaceutical powders. 1: The elasticity and fracture behavior of microcrystalline cellulose. Hancock BC; Clas SD; Christensen K Int J Pharm; 2000 Nov; 209(1-2):27-35. PubMed ID: 11084243 [TBL] [Abstract][Full Text] [Related]
15. Effect of the variation in the ambient moisture on the compaction behavior of powder undergoing roller-compaction and on the characteristics of tablets produced from the post-milled granules. Gupta A; Peck GE; Miller RW; Morris KR J Pharm Sci; 2005 Oct; 94(10):2314-26. PubMed ID: 16136545 [TBL] [Abstract][Full Text] [Related]
16. Modified Young's modulus of microcrystalline cellulose tablets and the directed continuum percolation model. Kuentz M; Leuenberger H Pharm Dev Technol; 1998 Feb; 3(1):13-9. PubMed ID: 9532596 [TBL] [Abstract][Full Text] [Related]
17. Lignin and Cellulose Blends as Pharmaceutical Excipient for Tablet Manufacturing via Direct Compression. Domínguez-Robles J; Stewart SA; Rendl A; González Z; Donnelly RF; Larrañeta E Biomolecules; 2019 Aug; 9(9):. PubMed ID: 31466387 [TBL] [Abstract][Full Text] [Related]
18. Ultrasonic approach for viscoelastic and microstructure characterization of granular pharmaceutical tablets. Saeedi Vahdat A; Krishna Prasad Vallabh C; Hancock BC; Cetinkaya C Int J Pharm; 2013 Sep; 454(1):333-43. PubMed ID: 23820132 [TBL] [Abstract][Full Text] [Related]
19. Comparative evaluation of powder and tableting properties of low and high degree of polymerization cellulose I and cellulose II excipients. de la Luz Reus Medina M; Kumar V Int J Pharm; 2007 Jun; 337(1-2):202-9. PubMed ID: 17376616 [TBL] [Abstract][Full Text] [Related]
20. The impact of roller compaction and tablet compression on physicomechanical properties of pharmaceutical excipients. Iyer RM; Hegde S; Dinunzio J; Singhal D; Malick W Pharm Dev Technol; 2014 Aug; 19(5):583-92. PubMed ID: 23941645 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]