These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

395 related articles for article (PubMed ID: 26410756)

  • 21. Microcrystalline cellulose, a direct compression binder in a quality by design environment--a review.
    Thoorens G; Krier F; Leclercq B; Carlin B; Evrard B
    Int J Pharm; 2014 Oct; 473(1-2):64-72. PubMed ID: 24993785
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Dependence of Friability on Tablet Mechanical Properties and a Predictive Approach for Binary Mixtures.
    Paul S; Sun CC
    Pharm Res; 2017 Dec; 34(12):2901-2909. PubMed ID: 28983779
    [TBL] [Abstract][Full Text] [Related]  

  • 23. The characterization of the mechanical properties of microcrystalline cellulose: a fracture mechanics approach.
    Mashadi AB; Newton JM
    J Pharm Pharmacol; 1987 Dec; 39(12):961-5. PubMed ID: 2894442
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Investigations on the Impacts of Drugs or Excipients with Different Physicochemical and Compaction Properties on the Disintegration Behavior of Kollidon®SR-Based Binary Controlled Release Matrix Tablets.
    Obeidat WM; Gharaibeh SFF
    AAPS PharmSciTech; 2024 Oct; 25(7):235. PubMed ID: 39375251
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Predictions of tensile strength of binary tablets using linear and power law mixing rules.
    Michrafy A; Michrafy M; Kadiri MS; Dodds JA
    Int J Pharm; 2007 Mar; 333(1-2):118-26. PubMed ID: 17097245
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Data-smart machine learning methods for predicting composition-dependent Young's modulus of pharmaceutical compacts.
    Thomas S; Palahnuk H; Amini H; Akseli I
    Int J Pharm; 2021 Jan; 592():120049. PubMed ID: 33171260
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Compaction simulator studies of a new drug substance: effect of particle size and shape, and its binary mixtures with microcrystalline cellulose.
    Celik M; Ong JT; Chowhan ZT; Samuel GJ
    Pharm Dev Technol; 1996 Jul; 1(2):119-26. PubMed ID: 9552338
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Novel multifunctional pharmaceutical excipients derived from microcrystalline cellulose-starch microparticulate composites prepared by compatibilized reactive polymer blending.
    Builders PF; Bonaventure AM; Tiwalade A; Okpako LC; Attama AA
    Int J Pharm; 2010 Mar; 388(1-2):159-67. PubMed ID: 20060448
    [TBL] [Abstract][Full Text] [Related]  

  • 29. [Microcrystalline cellulose and their flow -- morphological properties modifications as an effective excpients in tablet formulation technology containing lattice established API and also dry plant extract].
    Zgoda MM; Nachajski MJ; Kołodziejczyk MK
    Polim Med; 2009; 39(1):17-30. PubMed ID: 19580170
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Correlation between compactibility values and excipient cluster size using an in silico approach.
    Martínez L; Betz G; Villalobos R; Melgoza L; Young PM
    Drug Dev Ind Pharm; 2013 Feb; 39(2):374-81. PubMed ID: 22568747
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Structural heterogeneity of pharmaceutical compacts probed by micro-indentation.
    Lee J
    J Mater Sci Mater Med; 2008 May; 19(5):1981-90. PubMed ID: 17943416
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Influence of ambient moisture on the compaction behavior of microcrystalline cellulose powder undergoing uni-axial compression and roller-compaction: a comparative study using near-infrared spectroscopy.
    Gupta A; Peck GE; Miller RW; Morris KR
    J Pharm Sci; 2005 Oct; 94(10):2301-13. PubMed ID: 16136560
    [TBL] [Abstract][Full Text] [Related]  

  • 33. The tensile strength of bilayered tablets made from different grades of microcrystalline cellulose.
    Podczeck F; Al-Muti E
    Eur J Pharm Sci; 2010 Nov; 41(3-4):483-8. PubMed ID: 20696243
    [TBL] [Abstract][Full Text] [Related]  

  • 34. A study on the effect of drying techniques on the mechanical properties of pellets and compacted pellets.
    Bashaiwoldu AB; Podczeck F; Newton JM
    Eur J Pharm Sci; 2004 Feb; 21(2-3):119-29. PubMed ID: 14757483
    [TBL] [Abstract][Full Text] [Related]  

  • 35. The effect of unloading and ejection conditions on the properties of pharmaceutical tablets.
    Mazel V; Yost E; Sluga KK; Nagapudi K; Muliadi AR
    Int J Pharm; 2024 Jun; 658():124150. PubMed ID: 38663645
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Microcrystalline cellulose and its microstructure in pharmaceutical processing.
    Westermarck S; Juppo AM; Kervinen L; Yliruusi J
    Eur J Pharm Biopharm; 1999 Nov; 48(3):199-206. PubMed ID: 10612030
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Noninvasive porosity measurement of biconvex tablets using terahertz pulses.
    Bawuah P; Ervasti T; Tan N; Zeitler JA; Ketolainen J; Peiponen KE
    Int J Pharm; 2016 Jul; 509(1-2):439-443. PubMed ID: 27289013
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Estimation of Young's modulus of pharmaceutical tablet obtained by terahertz time-delay measurement.
    Peiponen KE; Bawuah P; Chakraborty M; Juuti M; Zeitler JA; Ketolainen J
    Int J Pharm; 2015 Jul; 489(1-2):100-5. PubMed ID: 25934425
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Directional bonding in compacted microcrystalline cellulose.
    Edge S; Steele DF; Tobyn MJ; Staniforth JN; Chen A
    Drug Dev Ind Pharm; 2001 Aug; 27(7):613-21. PubMed ID: 11694008
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Detection of porosity of pharmaceutical compacts by terahertz radiation transmission and light reflection measurement techniques.
    Bawuah P; Pierotic Mendia A; Silfsten P; Pääkkönen P; Ervasti T; Ketolainen J; Zeitler JA; Peiponen KE
    Int J Pharm; 2014 Apr; 465(1-2):70-6. PubMed ID: 24530384
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 20.