BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

846 related articles for article (PubMed ID: 26410786)

  • 1. The influence of nanostructured features on bacterial adhesion and bone cell functions on severely shot peened 316L stainless steel.
    Bagherifard S; Hickey DJ; de Luca AC; Malheiro VN; Markaki AE; Guagliano M; Webster TJ
    Biomaterials; 2015 Dec; 73():185-97. PubMed ID: 26410786
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Enhanced osteoblast proliferation and corrosion resistance of commercially pure titanium through surface nanostructuring by ultrasonic shot peening and stress relieving.
    Jindal S; Bansal R; Singh BP; Pandey R; Narayanan S; Wani MR; Singh V
    J Oral Implantol; 2014 Jul; 40 Spec No():347-55. PubMed ID: 25020216
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effects of nanofeatures induced by severe shot peening (SSP) on mechanical, corrosion and cytocompatibility properties of magnesium alloy AZ31.
    Bagherifard S; Hickey DJ; Fintová S; Pastorek F; Fernandez-Pariente I; Bandini M; Webster TJ; Guagliano M
    Acta Biomater; 2018 Jan; 66():93-108. PubMed ID: 29183850
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Understanding the impact of grain structure in austenitic stainless steel from a nanograined regime to a coarse-grained regime on osteoblast functions using a novel metal deformation-annealing sequence.
    Misra RD; Nune C; Pesacreta TC; Somani MC; Karjalainen LP
    Acta Biomater; 2013 Apr; 9(4):6245-58. PubMed ID: 23232208
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Pre-adsorption of protein on electrochemically grooved nanostructured stainless steel implant and relationship to cellular activity.
    Nune KC; Misra RD
    J Biomed Nanotechnol; 2014 Jul; 10(7):1320-35. PubMed ID: 24804553
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Bacterial adherence to tantalum versus commonly used orthopedic metallic implant materials.
    Schildhauer TA; Robie B; Muhr G; Köller M
    J Orthop Trauma; 2006 Jul; 20(7):476-84. PubMed ID: 16891939
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Enhancing the mechanical and biological performance of a metallic biomaterial for orthopedic applications through changes in the surface oxide layer by nanocrystalline surface modification.
    Bahl S; Shreyas P; Trishul MA; Suwas S; Chatterjee K
    Nanoscale; 2015 May; 7(17):7704-16. PubMed ID: 25833718
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Surface nanocrystallization for bacterial control.
    Yu B; Lesiuk A; Davis E; Irvin RT; Li DY
    Langmuir; 2010 Jul; 26(13):10930-4. PubMed ID: 20433185
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Laser surface modification of 316L stainless steel.
    Balla VK; Dey S; Muthuchamy AA; Janaki Ram GD; Das M; Bandyopadhyay A
    J Biomed Mater Res B Appl Biomater; 2018 Feb; 106(2):569-577. PubMed ID: 28245086
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Enhanced human osteoblast cell adhesion and proliferation on 316 LS stainless steel by means of CO2 laser surface treatment.
    Hao L; Lawrence J; Phua YF; Chian KS; Lim GC; Zheng HY
    J Biomed Mater Res B Appl Biomater; 2005 Apr; 73(1):148-56. PubMed ID: 15627247
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Osteoblast and monocyte responses to 444 ferritic stainless steel intended for a magneto-mechanically actuated fibrous scaffold.
    Malheiro VN; Spear RL; Brooks RA; Markaki AE
    Biomaterials; 2011 Oct; 32(29):6883-92. PubMed ID: 21703680
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Differential response of Staphylococci and osteoblasts to varying titanium surface roughness.
    Wu Y; Zitelli JP; TenHuisen KS; Yu X; Libera MR
    Biomaterials; 2011 Feb; 32(4):951-60. PubMed ID: 20974493
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Reduction of bacterial adhesion on ion-implanted stainless steel surfaces.
    Zhao Q; Liu Y; Wang C; Wang S; Peng N; Jeynes C
    Med Eng Phys; 2008 Apr; 30(3):341-9. PubMed ID: 17544806
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Adhesion of Staphylococcus aureus, Staphylococcus epidermidis, and Pseudomonas aeruginosa onto nanohydroxyapatite as a bone regeneration material.
    Grenho L; Manso MC; Monteiro FJ; Ferraz MP
    J Biomed Mater Res A; 2012 Jul; 100(7):1823-30. PubMed ID: 22489063
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Reduced bacterial growth and increased osteoblast proliferation on titanium with a nanophase TiO
    Bhardwaj G; Webster TJ
    Int J Nanomedicine; 2017; 12():363-369. PubMed ID: 28123296
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Anodized Nanostructured 316L Stainless Steel Enhances Osteoblast Functions and Exhibits Anti-Fouling Properties.
    Erdogan YK; Ercan B
    ACS Biomater Sci Eng; 2023 Feb; 9(2):693-704. PubMed ID: 36692948
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Interplay between grain structure and protein adsorption on functional response of osteoblasts: ultrafine-grained versus coarse-grained substrates.
    Misra RD; Nune C; Pesacreta TC; Somani MC; Karjalainen LP
    J Biomed Mater Res A; 2013 Jan; 101(1):1-12. PubMed ID: 22566462
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Mechanical, antibacterial, and biocompatibility mechanism of PVD grown silver-tantalum-oxide-based nanostructured thin film on stainless steel 316L for surgical applications.
    Alias R; Mahmoodian R; Genasan K; Vellasamy KM; Hamdi Abd Shukor M; Kamarul T
    Mater Sci Eng C Mater Biol Appl; 2020 Feb; 107():110304. PubMed ID: 31761210
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Comparison of conventional and severe shot peening effects on the microstructure, texture, roughness, hardness, and electrochemical behavior of austenitic stainless steel.
    Yazdani F; Rabiee SM; Jamaati R
    Heliyon; 2024 May; 10(10):e31284. PubMed ID: 38803990
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Atomic layer deposition of nano-TiO
    Liu L; Bhatia R; Webster TJ
    Int J Nanomedicine; 2017; 12():8711-8723. PubMed ID: 29263665
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 43.