BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

143 related articles for article (PubMed ID: 26410861)

  • 1. Haemocompatibility evaluation of silica nanomaterials using hemorheological measurements.
    Kim J; Heo YJ; Shin S
    Clin Hemorheol Microcirc; 2016; 62(2):99-107. PubMed ID: 26410861
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Toxic effects of silver nanoparticles and nanowires on erythrocyte rheology.
    Kim MJ; Shin S
    Food Chem Toxicol; 2014 May; 67():80-6. PubMed ID: 24534065
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Hemorheological characteristics of red blood cells exposed to surface functionalized graphene quantum dots.
    Kim J; Nafiujjaman M; Nurunnabi M; Lee YK; Park HK
    Food Chem Toxicol; 2016 Nov; 97():346-353. PubMed ID: 27697543
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Rheological alteration of erythrocytes exposed to carbon nanotubes.
    Heo Y; Li CA; Kim D; Shin S
    Clin Hemorheol Microcirc; 2017; 65(1):49-56. PubMed ID: 27392849
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Rheological characteristics of erythrocytes incubated in glucose media.
    Shin S; Ku YH; Suh JS; Singh M
    Clin Hemorheol Microcirc; 2008; 38(3):153-61. PubMed ID: 18239257
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effect of ion doping in silica-based nanoparticles on the hemolytic and oxidative activity in contact with human erythrocytes.
    Tsamesidis I; Pouroutzidou GK; Lymperaki E; Kazeli K; Lioutas CB; Christodoulou E; Perio P; Reybier K; Pantaleo A; Kontonasaki E
    Chem Biol Interact; 2020 Feb; 318():108974. PubMed ID: 32032594
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Model system to study the influence of aggregation on the hemolytic potential of silica nanoparticles.
    Thomassen LC; Rabolli V; Masschaele K; Alberto G; Tomatis M; Ghiazza M; Turci F; Breynaert E; Martra G; Kirschhock CE; Martens JA; Lison D; Fubini B
    Chem Res Toxicol; 2011 Nov; 24(11):1869-75. PubMed ID: 21928780
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Mesoporous silica nanoparticles for reducing hemolytic activity towards mammalian red blood cells.
    Slowing II; Wu CW; Vivero-Escoto JL; Lin VS
    Small; 2009 Jan; 5(1):57-62. PubMed ID: 19051185
    [No Abstract]   [Full Text] [Related]  

  • 9. Toxic and teratogenic silica nanowires in developing vertebrate embryos.
    Nelson SM; Mahmoud T; Beaux M; Shapiro P; McIlroy DN; Stenkamp DL
    Nanomedicine; 2010 Feb; 6(1):93-102. PubMed ID: 19447201
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Interaction of mesoporous silica nanoparticles with human red blood cell membranes: size and surface effects.
    Zhao Y; Sun X; Zhang G; Trewyn BG; Slowing II; Lin VS
    ACS Nano; 2011 Feb; 5(2):1366-75. PubMed ID: 21294526
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Impacts of mesoporous silica nanoparticle size, pore ordering, and pore integrity on hemolytic activity.
    Lin YS; Haynes CL
    J Am Chem Soc; 2010 Apr; 132(13):4834-42. PubMed ID: 20230032
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Real-time impedance analysis of silica nanowire toxicity on epithelial breast cancer cells.
    Alexander FA; Huey EG; Price DT; Bhansali S
    Analyst; 2012 Dec; 137(24):5823-8. PubMed ID: 23120749
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Impact of shape and pore size of mesoporous silica nanoparticles on serum protein adsorption and RBCs hemolysis.
    Ma Z; Bai J; Wang Y; Jiang X
    ACS Appl Mater Interfaces; 2014 Feb; 6(4):2431-8. PubMed ID: 24460090
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Analysis of Skin Permeability and Toxicological Properties of Amorphous Silica Particles.
    Matsuo K; Hirobe S; Okada N; Nakagawa S
    Biol Pharm Bull; 2016; 39(7):1201-5. PubMed ID: 27374294
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Mimicking red blood cell lipid membrane to enhance the hemocompatibility of large-pore mesoporous silica.
    Roggers RA; Joglekar M; Valenstein JS; Trewyn BG
    ACS Appl Mater Interfaces; 2014 Feb; 6(3):1675-81. PubMed ID: 24417657
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Hemorheological in vitro action of propofol on erythrocytes from healthy donors and diabetic patients.
    Alet AI; Basso SS; Castellini HV; Delannoy M; Alet N; D'Arrigo M; Riquelme BD
    Clin Hemorheol Microcirc; 2016 Nov; 64(2):157-165. PubMed ID: 27002895
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The influence of nanodiamond on the oxygenation states and micro rheological properties of human red blood cells in vitro.
    Lin YC; Tsai LW; Perevedentseva E; Chang HH; Lin CH; Sun DS; Lugovtsov AE; Priezzhev A; Mona J; Cheng CL
    J Biomed Opt; 2012 Oct; 17(10):101512. PubMed ID: 23223988
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Toxicity assessment of silica nanoparticles, functionalised silica nanoparticles, and HASE-grafted silica nanoparticles.
    Clément L; Zenerino A; Hurel C; Amigoni S; Taffin de Givenchy E; Guittard F; Marmier N
    Sci Total Environ; 2013 Apr; 450-451():120-8. PubMed ID: 23474257
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Genotoxicity evaluation of nanosized titanium dioxide, synthetic amorphous silica and multi-walled carbon nanotubes in human lymphocytes.
    Tavares AM; Louro H; Antunes S; Quarré S; Simar S; De Temmerman PJ; Verleysen E; Mast J; Jensen KA; Norppa H; Nesslany F; Silva MJ
    Toxicol In Vitro; 2014 Feb; 28(1):60-9. PubMed ID: 23811260
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Hemolytic properties of synthetic nano- and porous silica particles: the effect of surface properties and the protection by the plasma corona.
    Shi J; Hedberg Y; Lundin M; Odnevall Wallinder I; Karlsson HL; Möller L
    Acta Biomater; 2012 Sep; 8(9):3478-90. PubMed ID: 22522009
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.