BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

179 related articles for article (PubMed ID: 26411283)

  • 1. Multiple-exciton generation in lead selenide nanorod solar cells with external quantum efficiencies exceeding 120.
    Davis NJ; Böhm ML; Tabachnyk M; Wisnivesky-Rocca-Rivarola F; Jellicoe TC; Ducati C; Ehrler B; Greenham NC
    Nat Commun; 2015 Sep; 6():8259. PubMed ID: 26411283
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Lead Telluride Quantum Dot Solar Cells Displaying External Quantum Efficiencies Exceeding 120%.
    Böhm ML; Jellicoe TC; Tabachnyk M; Davis NJ; Wisnivesky-Rocca-Rivarola F; Ducati C; Ehrler B; Bakulin AA; Greenham NC
    Nano Lett; 2015 Dec; 15(12):7987-93. PubMed ID: 26488847
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Third generation photovoltaics based on multiple exciton generation in quantum confined semiconductors.
    Beard MC; Luther JM; Semonin OE; Nozik AJ
    Acc Chem Res; 2013 Jun; 46(6):1252-60. PubMed ID: 23113604
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Peak external photocurrent quantum efficiency exceeding 100% via MEG in a quantum dot solar cell.
    Semonin OE; Luther JM; Choi S; Chen HY; Gao J; Nozik AJ; Beard MC
    Science; 2011 Dec; 334(6062):1530-3. PubMed ID: 22174246
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Singlet exciton fission photovoltaics.
    Lee J; Jadhav P; Reusswig PD; Yost SR; Thompson NJ; Congreve DN; Hontz E; Van Voorhis T; Baldo MA
    Acc Chem Res; 2013 Jun; 46(6):1300-11. PubMed ID: 23611026
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Enhanced multiple exciton generation in quasi-one-dimensional semiconductors.
    Cunningham PD; Boercker JE; Foos EE; Lumb MP; Smith AR; Tischler JG; Melinger JS
    Nano Lett; 2011 Aug; 11(8):3476-81. PubMed ID: 21766838
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Aspect ratio dependent air stability of PbSe nanorods and photovoltaic applications.
    Asil D; Haciefendioğlu T
    Turk J Chem; 2021; 45(3):905-913. PubMed ID: 34385875
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Singlet exciton fission in polycrystalline pentacene: from photophysics toward devices.
    Wilson MW; Rao A; Ehrler B; Friend RH
    Acc Chem Res; 2013 Jun; 46(6):1330-8. PubMed ID: 23656886
    [TBL] [Abstract][Full Text] [Related]  

  • 9. In situ measurement of exciton energy in hybrid singlet-fission solar cells.
    Ehrler B; Walker BJ; Böhm ML; Wilson MW; Vaynzof Y; Friend RH; Greenham NC
    Nat Commun; 2012; 3():1019. PubMed ID: 22910365
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Theory of highly efficient multiexciton generation in type-II nanorods.
    Eshet H; Baer R; Neuhauser D; Rabani E
    Nat Commun; 2016 Oct; 7():13178. PubMed ID: 27725668
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Ultrafast exciton dynamics and light-driven H2 evolution in colloidal semiconductor nanorods and Pt-tipped nanorods.
    Wu K; Zhu H; Lian T
    Acc Chem Res; 2015 Mar; 48(3):851-9. PubMed ID: 25682713
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Low threshold and efficient multiple exciton generation in halide perovskite nanocrystals.
    Li M; Begum R; Fu J; Xu Q; Koh TM; Veldhuis SA; Grätzel M; Mathews N; Mhaisalkar S; Sum TC
    Nat Commun; 2018 Oct; 9(1):4197. PubMed ID: 30305633
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Solution-processable singlet fission photovoltaic devices.
    Yang L; Tabachnyk M; Bayliss SL; Böhm ML; Broch K; Greenham NC; Friend RH; Ehrler B
    Nano Lett; 2015 Jan; 15(1):354-8. PubMed ID: 25517654
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Photovoltaic performance of ultrasmall PbSe quantum dots.
    Ma W; Swisher SL; Ewers T; Engel J; Ferry VE; Atwater HA; Alivisatos AP
    ACS Nano; 2011 Oct; 5(10):8140-7. PubMed ID: 21939281
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The generalized Shockley-Queisser limit for nanostructured solar cells.
    Xu Y; Gong T; Munday JN
    Sci Rep; 2015 Sep; 5():13536. PubMed ID: 26329479
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Lead Selenide (PbSe) Colloidal Quantum Dot Solar Cells with >10% Efficiency.
    Ahmad W; He J; Liu Z; Xu K; Chen Z; Yang X; Li D; Xia Y; Zhang J; Chen C
    Adv Mater; 2019 Aug; 31(33):e1900593. PubMed ID: 31222874
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Singlet Fission: Progress and Prospects in Solar Cells.
    Xia J; Sanders SN; Cheng W; Low JZ; Liu J; Campos LM; Sun T
    Adv Mater; 2017 May; 29(20):. PubMed ID: 27973702
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Modulating Exciton Dynamics in Composite Nanocrystals for Excitonic Solar Cells.
    Concina I; Manzoni C; Grancini G; Celikin M; Soudi A; Rosei F; Zavelani-Rossi M; Cerullo G; Vomiero A
    J Phys Chem Lett; 2015 Jul; 6(13):2489-95. PubMed ID: 26266724
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Ultimate Charge Extraction of Monolayer PbS Quantum Dot for Observation of Multiple Exciton Generation.
    Park SY; Han S; Kim Y; Jung S; Kim DH; Han GS; Jung HS
    Chemphyschem; 2019 Oct; 20(20):2657-2661. PubMed ID: 31410971
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Generating free charges by carrier multiplication in quantum dots for highly efficient photovoltaics.
    Ten Cate S; Sandeep CS; Liu Y; Law M; Kinge S; Houtepen AJ; Schins JM; Siebbeles LD
    Acc Chem Res; 2015 Feb; 48(2):174-81. PubMed ID: 25607377
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.