BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

228 related articles for article (PubMed ID: 26411452)

  • 1. Putative Prostate Cancer Risk SNP in an Androgen Receptor-Binding Site of the Melanophilin Gene Illustrates Enrichment of Risk SNPs in Androgen Receptor Target Sites.
    Bu H; Narisu N; Schlick B; Rainer J; Manke T; Schäfer G; Pasqualini L; Chines P; Schweiger MR; Fuchsberger C; Klocker H
    Hum Mutat; 2016 Jan; 37(1):52-64. PubMed ID: 26411452
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Integration of cap analysis of gene expression and chromatin immunoprecipitation analysis on array reveals genome-wide androgen receptor signaling in prostate cancer cells.
    Takayama K; Tsutsumi S; Katayama S; Okayama T; Horie-Inoue K; Ikeda K; Urano T; Kawazu C; Hasegawa A; Ikeo K; Gojyobori T; Ouchi Y; Hayashizaki Y; Aburatani H; Inoue S
    Oncogene; 2011 Feb; 30(5):619-30. PubMed ID: 20890304
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Association of prostate cancer risk with SNPs in regions containing androgen receptor binding sites captured by ChIP-On-chip analyses.
    Lu Y; Sun J; Kader AK; Kim ST; Kim JW; Liu W; Sun J; Lu D; Feng J; Zhu Y; Jin T; Zhang Z; Dimitrov L; Lowey J; Campbell K; Suh E; Duggan D; Carpten J; Trent JM; Gronberg H; Zheng SL; Isaacs WB; Xu J
    Prostate; 2012 Mar; 72(4):376-85. PubMed ID: 21671247
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Distinct transcriptional repertoire of the androgen receptor in ETS fusion-negative prostate cancer.
    Berglund AE; Rounbehler RJ; Gerke T; Awasthi S; Cheng CH; Takhar M; Davicioni E; Alshalalfa M; Erho N; Klein EA; Freedland SJ; Ross AE; Schaeffer EM; Trock BJ; Den RB; Cleveland JL; Park JY; Dhillon J; Yamoah K
    Prostate Cancer Prostatic Dis; 2019 May; 22(2):292-302. PubMed ID: 30367117
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A genome-wide survey over the ChIP-on-chip identified androgen receptor-binding genomic regions identifies a novel prostate cancer susceptibility locus at 12q13.13.
    Feng J; Sun J; Kim ST; Lu Y; Wang Z; Zhang Z; Gronberg H; Isaacs WB; Zheng SL; Xu J
    Cancer Epidemiol Biomarkers Prev; 2011 Nov; 20(11):2396-403. PubMed ID: 21960693
    [TBL] [Abstract][Full Text] [Related]  

  • 6. An AR-ERG transcriptional signature defined by long-range chromatin interactomes in prostate cancer cells.
    Zhang Z; Chng KR; Lingadahalli S; Chen Z; Liu MH; Do HH; Cai S; Rinaldi N; Poh HM; Li G; Sung YY; Heng CL; Core LJ; Tan SK; Ruan X; Lis JT; Kellis M; Ruan Y; Sung WK; Cheung E
    Genome Res; 2019 Feb; 29(2):223-235. PubMed ID: 30606742
    [TBL] [Abstract][Full Text] [Related]  

  • 7. In-silico identification and functional validation of allele-dependent AR enhancers.
    Garritano S; Romanel A; Ciribilli Y; Bisio A; Gavoci A; Inga A; Demichelis F
    Oncotarget; 2015 Mar; 6(7):4816-28. PubMed ID: 25693204
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Identification and validation of regulatory SNPs that modulate transcription factor chromatin binding and gene expression in prostate cancer.
    Jin HJ; Jung S; DebRoy AR; Davuluri RV
    Oncotarget; 2016 Aug; 7(34):54616-54626. PubMed ID: 27409348
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Comprehensive functional annotation of 77 prostate cancer risk loci.
    Hazelett DJ; Rhie SK; Gaddis M; Yan C; Lakeland DL; Coetzee SG; ; ; Henderson BE; Noushmehr H; Cozen W; Kote-Jarai Z; Eeles RA; Easton DF; Haiman CA; Lu W; Farnham PJ; Coetzee GA
    PLoS Genet; 2014 Jan; 10(1):e1004102. PubMed ID: 24497837
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Single-nucleotide polymorphism rs13426236 contributes to an increased prostate cancer risk via regulating MLPH splicing variant 4.
    Xiao F; Zhang P; Wang Y; Tian Y; James M; Huang CC; Wang L; Wang L
    Mol Carcinog; 2020 Jan; 59(1):45-55. PubMed ID: 31659808
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Bromodomain protein 4 discriminates tissue-specific super-enhancers containing disease-specific susceptibility loci in prostate and breast cancer.
    Zuber V; Bettella F; Witoelar A; ; ; ; ; Andreassen OA; Mills IG; Urbanucci A
    BMC Genomics; 2017 Mar; 18(1):270. PubMed ID: 28359301
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Identification of novel androgen response genes in prostate cancer cells by coupling chromatin immunoprecipitation and genomic microarray analysis.
    Takayama K; Kaneshiro K; Tsutsumi S; Horie-Inoue K; Ikeda K; Urano T; Ijichi N; Ouchi Y; Shirahige K; Aburatani H; Inoue S
    Oncogene; 2007 Jun; 26(30):4453-63. PubMed ID: 17297473
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Regulation of FGF8 expression by the androgen receptor in human prostate cancer.
    Gnanapragasam VJ; Robson CN; Neal DE; Leung HY
    Oncogene; 2002 Aug; 21(33):5069-80. PubMed ID: 12140757
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Integrative functional genomics identifies an enhancer looping to the SOX9 gene disrupted by the 17q24.3 prostate cancer risk locus.
    Zhang X; Cowper-Sal lari R; Bailey SD; Moore JH; Lupien M
    Genome Res; 2012 Aug; 22(8):1437-46. PubMed ID: 22665440
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Determinants of Gli2 co-activation of wildtype and naturally truncated androgen receptors.
    Li N; Chen M; Truong S; Yan C; Buttyan R
    Prostate; 2014 Oct; 74(14):1400-10. PubMed ID: 25132524
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The NLR-related protein NWD1 is associated with prostate cancer and modulates androgen receptor signaling.
    Correa RG; Krajewska M; Ware CF; Gerlic M; Reed JC
    Oncotarget; 2014 Mar; 5(6):1666-82. PubMed ID: 24681825
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Refinement of the androgen response element based on ChIP-Seq in androgen-insensitive and androgen-responsive prostate cancer cell lines.
    Wilson S; Qi J; Filipp FV
    Sci Rep; 2016 Sep; 6():32611. PubMed ID: 27623747
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Single-Nucleotide Polymorphisms Sequencing Identifies Candidate Functional Variants at Prostate Cancer Risk Loci.
    Zhang P; Tillmans LS; Thibodeau SN; Wang L
    Genes (Basel); 2019 Jul; 10(7):. PubMed ID: 31323811
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Steroidogenic enzyme AKR1C3 is a novel androgen receptor-selective coactivator that promotes prostate cancer growth.
    Yepuru M; Wu Z; Kulkarni A; Yin F; Barrett CM; Kim J; Steiner MS; Miller DD; Dalton JT; Narayanan R
    Clin Cancer Res; 2013 Oct; 19(20):5613-25. PubMed ID: 23995860
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Hormone depletion-insensitivity of prostate cancer cells is supported by the AR without binding to classical response elements.
    Gonit M; Zhang J; Salazar Md; Cui H; Shatnawi A; Trumbly R; Ratnam M
    Mol Endocrinol; 2011 Apr; 25(4):621-34. PubMed ID: 21330406
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.