These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
2. Renaissance of an Old Topic: From Borazines to BN-doped Nanographenes. Lorenzo-García MM; Bonifazi D Chimia (Aarau); 2017 Sep; 71(9):550-557. PubMed ID: 30188283 [TBL] [Abstract][Full Text] [Related]
3. An ab initio study of 15N-11B spin-spin coupling constants for borazine and selected derivatives. Del Bene JE; Elguero J; Alkorta I; Yañez M; Mó O J Phys Chem A; 2006 Aug; 110(32):9959-66. PubMed ID: 16898700 [TBL] [Abstract][Full Text] [Related]
4. Syntheses and properties of B-C-N and BN nanostructures. Ma R; Golberg D; Bando Y; Sasaki T Philos Trans A Math Phys Eng Sci; 2004 Oct; 362(1823):2161-86. PubMed ID: 15370476 [TBL] [Abstract][Full Text] [Related]
5. Understanding boron through size-selected clusters: structure, chemical bonding, and fluxionality. Sergeeva AP; Popov IA; Piazza ZA; Li WL; Romanescu C; Wang LS; Boldyrev AI Acc Chem Res; 2014 Apr; 47(4):1349-58. PubMed ID: 24661097 [TBL] [Abstract][Full Text] [Related]
6. Palladium-catalyzed, stereoselective, cyclizative alkenylboration of carbon-carbon double bonds through activation of a boron-chlorine bond. Daini M; Suginome M J Am Chem Soc; 2011 Apr; 133(13):4758-61. PubMed ID: 21391594 [TBL] [Abstract][Full Text] [Related]
7. Binary and ternary doping of nitrogen, boron, and phosphorus into carbon for enhancing electrochemical oxygen reduction activity. Choi CH; Park SH; Woo SI ACS Nano; 2012 Aug; 6(8):7084-91. PubMed ID: 22769428 [TBL] [Abstract][Full Text] [Related]
8. Protecting group-free synthesis of 1,2-azaborines: a simple approach to the construction of BN-benzenoids. Abbey ER; Lamm AN; Baggett AW; Zakharov LN; Liu SY J Am Chem Soc; 2013 Aug; 135(34):12908-13. PubMed ID: 23914914 [TBL] [Abstract][Full Text] [Related]
9. Boron-Nitrogen-Doped Nanographenes: A Synthetic Tale from Borazine Precursors. Dosso J; Battisti T; Ward BD; Demitri N; Hughes CE; Williams PA; Harris KDM; Bonifazi D Chemistry; 2020 May; 26(29):6608-6621. PubMed ID: 32023358 [TBL] [Abstract][Full Text] [Related]
10. Effect of N/B doping on the electronic and field emission properties for carbon nanotubes, carbon nanocones, and graphene nanoribbons. Yu SS; Zheng WT Nanoscale; 2010 Jul; 2(7):1069-82. PubMed ID: 20648331 [TBL] [Abstract][Full Text] [Related]
11. Rhenium-catalysed dehydrogenative borylation of primary and secondary C(sp3)-H bonds adjacent to a nitrogen atom. Murai M; Omura T; Kuninobu Y; Takai K Chem Commun (Camb); 2015 Mar; 51(22):4583-6. PubMed ID: 25688385 [TBL] [Abstract][Full Text] [Related]
12. Boronyl chemistry: the BO group as a new ligand in gas-phase clusters and synthetic compounds. Zhai HJ; Chen Q; Bai H; Li SD; Wang LS Acc Chem Res; 2014 Aug; 47(8):2435-45. PubMed ID: 24915198 [TBL] [Abstract][Full Text] [Related]
13. Elemental isomerism: a boron-nitrogen surrogate for a carbon-carbon double bond increases the chemical diversity of estrogen receptor ligands. Zhou HB; Nettles KW; Bruning JB; Kim Y; Joachimiak A; Sharma S; Carlson KE; Stossi F; Katzenellenbogen BS; Greene GL; Katzenellenbogen JA Chem Biol; 2007 Jun; 14(6):659-69. PubMed ID: 17584613 [TBL] [Abstract][Full Text] [Related]
14. In silico studies toward the recognition of fluoride ion by substituted borazines. Kesharwani MK; Ganguly B J Mol Graph Model; 2012 Sep; 38():363-8. PubMed ID: 23085176 [TBL] [Abstract][Full Text] [Related]
15. Defect-Based Modulation of Optoelectronic Properties for Biofunctionalized Hexagonal Boron Nitride Nanosheets. Shakourian-Fard M; Heydari H; Kamath G Chemphyschem; 2017 Sep; 18(17):2328-2335. PubMed ID: 28632959 [TBL] [Abstract][Full Text] [Related]
16. Post-synthesis carbon doping of individual multiwalled boron nitride nanotubes via electron-beam irradiation. Wei X; Wang MS; Bando Y; Golberg D J Am Chem Soc; 2010 Oct; 132(39):13592-3. PubMed ID: 20836492 [TBL] [Abstract][Full Text] [Related]
17. The template synthesis of double coaxial carbon nanotubes with nitrogen-doped and boron-doped multiwalls. Yang Q; Xu W; Tomita A; Kyotani T J Am Chem Soc; 2005 Jun; 127(25):8956-7. PubMed ID: 15969565 [TBL] [Abstract][Full Text] [Related]
18. Substitutional doping of carbon nanotubes with heteroatoms and their chemical applications. Zhang Y; Zhang J; Su DS ChemSusChem; 2014 May; 7(5):1240-50. PubMed ID: 24678055 [TBL] [Abstract][Full Text] [Related]
19. Local atomic and electronic structure of boron chemical doping in monolayer graphene. Zhao L; Levendorf M; Goncher S; Schiros T; Pálová L; Zabet-Khosousi A; Rim KT; Gutiérrez C; Nordlund D; Jaye C; Hybertsen M; Reichman D; Flynn GW; Park J; Pasupathy AN Nano Lett; 2013 Oct; 13(10):4659-65. PubMed ID: 24032458 [TBL] [Abstract][Full Text] [Related]
20. Diversity through isosterism: the case of boron-substituted 1,2-dihydro-1,2-azaborines. Marwitz AJ; Abbey ER; Jenkins JT; Zakharov LN; Liu SY Org Lett; 2007 Nov; 9(23):4905-8. PubMed ID: 17944483 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]