BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

242 related articles for article (PubMed ID: 26411675)

  • 1. Boron-nitrogen doped carbon scaffolding: organic chemistry, self-assembly and materials applications of borazine and its derivatives.
    Bonifazi D; Fasano F; Lorenzo-Garcia MM; Marinelli D; Oubaha H; Tasseroul J
    Chem Commun (Camb); 2015 Oct; 51(83):15222-36. PubMed ID: 26411675
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Renaissance of an Old Topic: From Borazines to BN-doped Nanographenes.
    Lorenzo-García MM; Bonifazi D
    Chimia (Aarau); 2017 Sep; 71(9):550-557. PubMed ID: 30188283
    [TBL] [Abstract][Full Text] [Related]  

  • 3. An ab initio study of 15N-11B spin-spin coupling constants for borazine and selected derivatives.
    Del Bene JE; Elguero J; Alkorta I; Yañez M; Mó O
    J Phys Chem A; 2006 Aug; 110(32):9959-66. PubMed ID: 16898700
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Syntheses and properties of B-C-N and BN nanostructures.
    Ma R; Golberg D; Bando Y; Sasaki T
    Philos Trans A Math Phys Eng Sci; 2004 Oct; 362(1823):2161-86. PubMed ID: 15370476
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Understanding boron through size-selected clusters: structure, chemical bonding, and fluxionality.
    Sergeeva AP; Popov IA; Piazza ZA; Li WL; Romanescu C; Wang LS; Boldyrev AI
    Acc Chem Res; 2014 Apr; 47(4):1349-58. PubMed ID: 24661097
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Palladium-catalyzed, stereoselective, cyclizative alkenylboration of carbon-carbon double bonds through activation of a boron-chlorine bond.
    Daini M; Suginome M
    J Am Chem Soc; 2011 Apr; 133(13):4758-61. PubMed ID: 21391594
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Binary and ternary doping of nitrogen, boron, and phosphorus into carbon for enhancing electrochemical oxygen reduction activity.
    Choi CH; Park SH; Woo SI
    ACS Nano; 2012 Aug; 6(8):7084-91. PubMed ID: 22769428
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Protecting group-free synthesis of 1,2-azaborines: a simple approach to the construction of BN-benzenoids.
    Abbey ER; Lamm AN; Baggett AW; Zakharov LN; Liu SY
    J Am Chem Soc; 2013 Aug; 135(34):12908-13. PubMed ID: 23914914
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Boron-Nitrogen-Doped Nanographenes: A Synthetic Tale from Borazine Precursors.
    Dosso J; Battisti T; Ward BD; Demitri N; Hughes CE; Williams PA; Harris KDM; Bonifazi D
    Chemistry; 2020 May; 26(29):6608-6621. PubMed ID: 32023358
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effect of N/B doping on the electronic and field emission properties for carbon nanotubes, carbon nanocones, and graphene nanoribbons.
    Yu SS; Zheng WT
    Nanoscale; 2010 Jul; 2(7):1069-82. PubMed ID: 20648331
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Rhenium-catalysed dehydrogenative borylation of primary and secondary C(sp3)-H bonds adjacent to a nitrogen atom.
    Murai M; Omura T; Kuninobu Y; Takai K
    Chem Commun (Camb); 2015 Mar; 51(22):4583-6. PubMed ID: 25688385
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Boronyl chemistry: the BO group as a new ligand in gas-phase clusters and synthetic compounds.
    Zhai HJ; Chen Q; Bai H; Li SD; Wang LS
    Acc Chem Res; 2014 Aug; 47(8):2435-45. PubMed ID: 24915198
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Elemental isomerism: a boron-nitrogen surrogate for a carbon-carbon double bond increases the chemical diversity of estrogen receptor ligands.
    Zhou HB; Nettles KW; Bruning JB; Kim Y; Joachimiak A; Sharma S; Carlson KE; Stossi F; Katzenellenbogen BS; Greene GL; Katzenellenbogen JA
    Chem Biol; 2007 Jun; 14(6):659-69. PubMed ID: 17584613
    [TBL] [Abstract][Full Text] [Related]  

  • 14. In silico studies toward the recognition of fluoride ion by substituted borazines.
    Kesharwani MK; Ganguly B
    J Mol Graph Model; 2012 Sep; 38():363-8. PubMed ID: 23085176
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Defect-Based Modulation of Optoelectronic Properties for Biofunctionalized Hexagonal Boron Nitride Nanosheets.
    Shakourian-Fard M; Heydari H; Kamath G
    Chemphyschem; 2017 Sep; 18(17):2328-2335. PubMed ID: 28632959
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Post-synthesis carbon doping of individual multiwalled boron nitride nanotubes via electron-beam irradiation.
    Wei X; Wang MS; Bando Y; Golberg D
    J Am Chem Soc; 2010 Oct; 132(39):13592-3. PubMed ID: 20836492
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The template synthesis of double coaxial carbon nanotubes with nitrogen-doped and boron-doped multiwalls.
    Yang Q; Xu W; Tomita A; Kyotani T
    J Am Chem Soc; 2005 Jun; 127(25):8956-7. PubMed ID: 15969565
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Substitutional doping of carbon nanotubes with heteroatoms and their chemical applications.
    Zhang Y; Zhang J; Su DS
    ChemSusChem; 2014 May; 7(5):1240-50. PubMed ID: 24678055
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Local atomic and electronic structure of boron chemical doping in monolayer graphene.
    Zhao L; Levendorf M; Goncher S; Schiros T; Pálová L; Zabet-Khosousi A; Rim KT; Gutiérrez C; Nordlund D; Jaye C; Hybertsen M; Reichman D; Flynn GW; Park J; Pasupathy AN
    Nano Lett; 2013 Oct; 13(10):4659-65. PubMed ID: 24032458
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Diversity through isosterism: the case of boron-substituted 1,2-dihydro-1,2-azaborines.
    Marwitz AJ; Abbey ER; Jenkins JT; Zakharov LN; Liu SY
    Org Lett; 2007 Nov; 9(23):4905-8. PubMed ID: 17944483
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.