These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
100 related articles for article (PubMed ID: 26411840)
1. Control of localized surface plasmon resonance energy in monolayer structures of gold and silver nanoparticles. Yokota H; Taniguchi T; Watanabe T; Kim D Phys Chem Chem Phys; 2015 Oct; 17(40):27077-81. PubMed ID: 26411840 [TBL] [Abstract][Full Text] [Related]
2. Control of density and LSPR of Au nanoparticles on graphene. Lee S; Lee Mh; Shin HJ; Choi D Nanotechnology; 2013 Jul; 24(27):275702. PubMed ID: 23743613 [TBL] [Abstract][Full Text] [Related]
3. Aqueous phase synthesis of Au-Ag core-shell nanocrystals with tunable shapes and their optical and catalytic properties. Tsao YC; Rej S; Chiu CY; Huang MH J Am Chem Soc; 2014 Jan; 136(1):396-404. PubMed ID: 24341355 [TBL] [Abstract][Full Text] [Related]
4. Au-Ag-Au double shell nanoparticles-based localized surface plasmon resonance and surface-enhanced Raman scattering biosensor for sensitive detection of 2-mercapto-1-methylimidazole. Liao X; Chen Y; Qin M; Chen Y; Yang L; Zhang H; Tian Y Talanta; 2013 Dec; 117():203-8. PubMed ID: 24209331 [TBL] [Abstract][Full Text] [Related]
5. Effects of nanoparticle size and cell type on high sensitivity cell detection using a localized surface plasmon resonance biosensor. Liu F; Wong MM; Chiu SK; Lin H; Ho JC; Pang SW Biosens Bioelectron; 2014 May; 55():141-8. PubMed ID: 24373953 [TBL] [Abstract][Full Text] [Related]
6. Electrochemically controlled assembly and logic gates operations of gold nanoparticle arrays. Frasconi M; Mazzei F Langmuir; 2012 Feb; 28(6):3322-31. PubMed ID: 22225408 [TBL] [Abstract][Full Text] [Related]
7. Synthesis of Au@Ag core-shell nanocubes containing varying shaped cores and their localized surface plasmon resonances. Gong J; Zhou F; Li Z; Tang Z Langmuir; 2012 Jun; 28(24):8959-64. PubMed ID: 22299655 [TBL] [Abstract][Full Text] [Related]
8. Wavelength, concentration, and distance dependence of nonradiative energy transfer to a plane of gold nanoparticles. Zhang X; Marocico CA; Lunz M; Gerard VA; Gun'ko YK; Lesnyak V; Gaponik N; Susha AS; Rogach AL; Bradley AL ACS Nano; 2012 Oct; 6(10):9283-90. PubMed ID: 22973978 [TBL] [Abstract][Full Text] [Related]
9. Enhanced optical output of InGaN/GaN near-ultraviolet light-emitting diodes by localized surface plasmon of colloidal silver nanoparticles. Hong SH; Kim JJ; Kang JW; Jung YS; Kim DY; Yim SY; Park SJ Nanotechnology; 2015 Sep; 26(38):385204. PubMed ID: 26335045 [TBL] [Abstract][Full Text] [Related]
10. Tunable near-infrared optical properties of three-layered metal nanoshells. Wu D; Xu X; Liu X J Chem Phys; 2008 Aug; 129(7):074711. PubMed ID: 19044796 [TBL] [Abstract][Full Text] [Related]
11. Strong improvements of localized surface plasmon resonance sensitivity by using Au/Ag bimetallic nanostructures modified with polydopamine films. Jia K; Khaywah MY; Li Y; Bijeon JL; Adam PM; Déturche R; Guelorget B; François M; Louarn G; Ionescu RE ACS Appl Mater Interfaces; 2014 Jan; 6(1):219-27. PubMed ID: 24281403 [TBL] [Abstract][Full Text] [Related]
12. Surface plasmon mediated chemical solution deposition of gold nanoparticles on a nanostructured silver surface at room temperature. Qiu J; Wu YC; Wang YC; Engelhard MH; McElwee-White L; Wei WD J Am Chem Soc; 2013 Jan; 135(1):38-41. PubMed ID: 23241020 [TBL] [Abstract][Full Text] [Related]
13. Analysis of fiber-optic localized surface plasmon resonance sensor by controlling formation of gold nanoparticles and its bio-application. Jeong HH; Erdene N; Park JH; Jeong DH; Lee SK J Nanosci Nanotechnol; 2012 Oct; 12(10):7815-21. PubMed ID: 23421143 [TBL] [Abstract][Full Text] [Related]
14. Organic vapour sensing using localized surface plasmon resonance spectrum of metallic nanoparticles self assemble monolayer. Cheng CS; Chen YQ; Lu CJ Talanta; 2007 Sep; 73(2):358-65. PubMed ID: 19073040 [TBL] [Abstract][Full Text] [Related]
15. Focused-ion-beam-fabricated Au nanorods coupled with Ag nanoparticles used as surface-enhanced Raman scattering-active substrate for analyzing trace melamine constituents in solution. Sivashanmugan K; Liao JD; Liu BH; Yao CK Anal Chim Acta; 2013 Oct; 800():56-64. PubMed ID: 24120168 [TBL] [Abstract][Full Text] [Related]
16. Hybridization of localized surface plasmon resonance-based Au-Ag nanoparticles. Zhu S; Fu Y Biomed Microdevices; 2009 Jun; 11(3):579-83. PubMed ID: 19085108 [TBL] [Abstract][Full Text] [Related]
17. Size control and immobilization of gold nanoparticles stabilized in an ionic liquid on glass substrates for plasmonic applications. Kameyama T; Ohno Y; Kurimoto T; Okazaki K; Uematsu T; Kuwabata S; Torimoto T Phys Chem Chem Phys; 2010 Feb; 12(8):1804-11. PubMed ID: 20145845 [TBL] [Abstract][Full Text] [Related]
18. Close-packed two-dimensional silver nanoparticle arrays: quadrupolar and dipolar surface plasmon resonance coupling. Yun S; Hong S; Acapulco JA; Jang HY; Ham S; Lee K; Kim SK; Park S Chemistry; 2015 Apr; 21(16):6165-72. PubMed ID: 25739448 [TBL] [Abstract][Full Text] [Related]
19. Bimetallic gold-silver nanoplate array as a highly active SERS substrate for detection of streptavidin/biotin assemblies. Bi L; Dong J; Xie W; Lu W; Tong W; Tao L; Qian W Anal Chim Acta; 2013 Dec; 805():95-100. PubMed ID: 24296148 [TBL] [Abstract][Full Text] [Related]
20. Sensing colorimetric approaches based on gold and silver nanoparticles aggregation: chemical creativity behind the assay. A review. Vilela D; González MC; Escarpa A Anal Chim Acta; 2012 Nov; 751():24-43. PubMed ID: 23084049 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]