These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

203 related articles for article (PubMed ID: 26411868)

  • 1. MDD-SOH: exploiting maximal dependence decomposition to identify S-sulfenylation sites with substrate motifs.
    Bui VM; Lu CT; Ho TT; Lee TY
    Bioinformatics; 2016 Jan; 32(2):165-72. PubMed ID: 26411868
    [TBL] [Abstract][Full Text] [Related]  

  • 2. GSHSite: exploiting an iteratively statistical method to identify s-glutathionylation sites with substrate specificity.
    Chen YJ; Lu CT; Huang KY; Wu HY; Chen YJ; Lee TY
    PLoS One; 2015; 10(4):e0118752. PubMed ID: 25849935
    [TBL] [Abstract][Full Text] [Related]  

  • 3. MDD-Palm: Identification of protein S-palmitoylation sites with substrate motifs based on maximal dependence decomposition.
    Weng SL; Kao HJ; Huang CH; Lee TY
    PLoS One; 2017; 12(6):e0179529. PubMed ID: 28662047
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Characterization and identification of lysine glutarylation based on intrinsic interdependence between positions in the substrate sites.
    Huang KY; Kao HJ; Hsu JB; Weng SL; Lee TY
    BMC Bioinformatics; 2019 Feb; 19(Suppl 13):384. PubMed ID: 30717647
    [TBL] [Abstract][Full Text] [Related]  

  • 5. SNOSite: exploiting maximal dependence decomposition to identify cysteine S-nitrosylation with substrate site specificity.
    Lee TY; Chen YJ; Lu TC; Huang HD; Chen YJ
    PLoS One; 2011; 6(7):e21849. PubMed ID: 21789187
    [TBL] [Abstract][Full Text] [Related]  

  • 6. UbiSite: incorporating two-layered machine learning method with substrate motifs to predict ubiquitin-conjugation site on lysines.
    Huang CH; Su MG; Kao HJ; Jhong JH; Weng SL; Lee TY
    BMC Syst Biol; 2016 Jan; 10 Suppl 1(Suppl 1):6. PubMed ID: 26818456
    [TBL] [Abstract][Full Text] [Related]  

  • 7. SOHSite: incorporating evolutionary information and physicochemical properties to identify protein S-sulfenylation sites.
    Bui VM; Weng SL; Lu CT; Chang TH; Weng JT; Lee TY
    BMC Genomics; 2016 Jan; 17 Suppl 1(Suppl 1):9. PubMed ID: 26819243
    [TBL] [Abstract][Full Text] [Related]  

  • 8. SOHPRED: a new bioinformatics tool for the characterization and prediction of human S-sulfenylation sites.
    Wang X; Yan R; Li J; Song J
    Mol Biosyst; 2016 Aug; 12(9):2849-58. PubMed ID: 27364688
    [TBL] [Abstract][Full Text] [Related]  

  • 9. MDD-carb: a combinatorial model for the identification of protein carbonylation sites with substrate motifs.
    Kao HJ; Weng SL; Huang KY; Kaunang FJ; Hsu JB; Huang CH; Lee TY
    BMC Syst Biol; 2017 Dec; 11(Suppl 7):137. PubMed ID: 29322938
    [TBL] [Abstract][Full Text] [Related]  

  • 10. PRESS: PRotEin S-Sulfenylation server.
    Sakka M; Tzortzis G; Mantzaris MD; Bekas N; Kellici TF; Likas A; Galaris D; Gerothanassis IP; Tzakos AG
    Bioinformatics; 2016 Sep; 32(17):2710-2. PubMed ID: 27187205
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A two-layered machine learning method to identify protein O-GlcNAcylation sites with O-GlcNAc transferase substrate motifs.
    Kao HJ; Huang CH; Bretaña NA; Lu CT; Huang KY; Weng SL; Lee TY
    BMC Bioinformatics; 2015; 16 Suppl 18(Suppl 18):S10. PubMed ID: 26680539
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Prediction of S-sulfenylation sites using mRMR feature selection and fuzzy support vector machine algorithm.
    Ju Z; Wang SY
    J Theor Biol; 2018 Nov; 457():6-13. PubMed ID: 30125576
    [TBL] [Abstract][Full Text] [Related]  

  • 13. SVM-SulfoSite: A support vector machine based predictor for sulfenylation sites.
    Al-Barakati HJ; McConnell EW; Hicks LM; Poole LB; Newman RH; Kc DB
    Sci Rep; 2018 Jul; 8(1):11288. PubMed ID: 30050050
    [TBL] [Abstract][Full Text] [Related]  

  • 14. iDPGK: characterization and identification of lysine phosphoglycerylation sites based on sequence-based features.
    Huang KY; Hung FY; Kao HJ; Lau HH; Weng SL
    BMC Bioinformatics; 2020 Dec; 21(1):568. PubMed ID: 33297954
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Computational identification of protein S-sulfenylation sites by incorporating the multiple sequence features information.
    Hasan MM; Guo D; Kurata H
    Mol Biosyst; 2017 Nov; 13(12):2545-2550. PubMed ID: 28990628
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Characterization and identification of protein O-GlcNAcylation sites with substrate specificity.
    Wu HY; Lu CT; Kao HJ; Chen YJ; Chen YJ; Lee TY
    BMC Bioinformatics; 2014; 15 Suppl 16(Suppl 16):S1. PubMed ID: 25521204
    [TBL] [Abstract][Full Text] [Related]  

  • 17. S-SulfPred: A sensitive predictor to capture S-sulfenylation sites based on a resampling one-sided selection undersampling-synthetic minority oversampling technique.
    Jia C; Zuo Y
    J Theor Biol; 2017 Jun; 422():84-89. PubMed ID: 28411111
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A Comprehensive Review of In silico Analysis for Protein S-sulfenylation Sites.
    Hasan MM; Khatun MS; Kurata H
    Protein Pept Lett; 2018; 25(9):815-821. PubMed ID: 30182830
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Exploiting maximal dependence decomposition to identify conserved motifs from a group of aligned signal sequences.
    Lee TY; Lin ZQ; Hsieh SJ; Bretaña NA; Lu CT
    Bioinformatics; 2011 Jul; 27(13):1780-7. PubMed ID: 21551145
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Characterization and Identification of Lysine Succinylation Sites based on Deep Learning Method.
    Huang KY; Hsu JB; Lee TY
    Sci Rep; 2019 Nov; 9(1):16175. PubMed ID: 31700141
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.