BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

209 related articles for article (PubMed ID: 26411868)

  • 1. MDD-SOH: exploiting maximal dependence decomposition to identify S-sulfenylation sites with substrate motifs.
    Bui VM; Lu CT; Ho TT; Lee TY
    Bioinformatics; 2016 Jan; 32(2):165-72. PubMed ID: 26411868
    [TBL] [Abstract][Full Text] [Related]  

  • 2. GSHSite: exploiting an iteratively statistical method to identify s-glutathionylation sites with substrate specificity.
    Chen YJ; Lu CT; Huang KY; Wu HY; Chen YJ; Lee TY
    PLoS One; 2015; 10(4):e0118752. PubMed ID: 25849935
    [TBL] [Abstract][Full Text] [Related]  

  • 3. MDD-Palm: Identification of protein S-palmitoylation sites with substrate motifs based on maximal dependence decomposition.
    Weng SL; Kao HJ; Huang CH; Lee TY
    PLoS One; 2017; 12(6):e0179529. PubMed ID: 28662047
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Characterization and identification of lysine glutarylation based on intrinsic interdependence between positions in the substrate sites.
    Huang KY; Kao HJ; Hsu JB; Weng SL; Lee TY
    BMC Bioinformatics; 2019 Feb; 19(Suppl 13):384. PubMed ID: 30717647
    [TBL] [Abstract][Full Text] [Related]  

  • 5. SNOSite: exploiting maximal dependence decomposition to identify cysteine S-nitrosylation with substrate site specificity.
    Lee TY; Chen YJ; Lu TC; Huang HD; Chen YJ
    PLoS One; 2011; 6(7):e21849. PubMed ID: 21789187
    [TBL] [Abstract][Full Text] [Related]  

  • 6. UbiSite: incorporating two-layered machine learning method with substrate motifs to predict ubiquitin-conjugation site on lysines.
    Huang CH; Su MG; Kao HJ; Jhong JH; Weng SL; Lee TY
    BMC Syst Biol; 2016 Jan; 10 Suppl 1(Suppl 1):6. PubMed ID: 26818456
    [TBL] [Abstract][Full Text] [Related]  

  • 7. SOHSite: incorporating evolutionary information and physicochemical properties to identify protein S-sulfenylation sites.
    Bui VM; Weng SL; Lu CT; Chang TH; Weng JT; Lee TY
    BMC Genomics; 2016 Jan; 17 Suppl 1(Suppl 1):9. PubMed ID: 26819243
    [TBL] [Abstract][Full Text] [Related]  

  • 8. SOHPRED: a new bioinformatics tool for the characterization and prediction of human S-sulfenylation sites.
    Wang X; Yan R; Li J; Song J
    Mol Biosyst; 2016 Aug; 12(9):2849-58. PubMed ID: 27364688
    [TBL] [Abstract][Full Text] [Related]  

  • 9. MDD-carb: a combinatorial model for the identification of protein carbonylation sites with substrate motifs.
    Kao HJ; Weng SL; Huang KY; Kaunang FJ; Hsu JB; Huang CH; Lee TY
    BMC Syst Biol; 2017 Dec; 11(Suppl 7):137. PubMed ID: 29322938
    [TBL] [Abstract][Full Text] [Related]  

  • 10. PRESS: PRotEin S-Sulfenylation server.
    Sakka M; Tzortzis G; Mantzaris MD; Bekas N; Kellici TF; Likas A; Galaris D; Gerothanassis IP; Tzakos AG
    Bioinformatics; 2016 Sep; 32(17):2710-2. PubMed ID: 27187205
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A two-layered machine learning method to identify protein O-GlcNAcylation sites with O-GlcNAc transferase substrate motifs.
    Kao HJ; Huang CH; Bretaña NA; Lu CT; Huang KY; Weng SL; Lee TY
    BMC Bioinformatics; 2015; 16 Suppl 18(Suppl 18):S10. PubMed ID: 26680539
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Prediction of S-sulfenylation sites using mRMR feature selection and fuzzy support vector machine algorithm.
    Ju Z; Wang SY
    J Theor Biol; 2018 Nov; 457():6-13. PubMed ID: 30125576
    [TBL] [Abstract][Full Text] [Related]  

  • 13. SVM-SulfoSite: A support vector machine based predictor for sulfenylation sites.
    Al-Barakati HJ; McConnell EW; Hicks LM; Poole LB; Newman RH; Kc DB
    Sci Rep; 2018 Jul; 8(1):11288. PubMed ID: 30050050
    [TBL] [Abstract][Full Text] [Related]  

  • 14. iDPGK: characterization and identification of lysine phosphoglycerylation sites based on sequence-based features.
    Huang KY; Hung FY; Kao HJ; Lau HH; Weng SL
    BMC Bioinformatics; 2020 Dec; 21(1):568. PubMed ID: 33297954
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Computational identification of protein S-sulfenylation sites by incorporating the multiple sequence features information.
    Hasan MM; Guo D; Kurata H
    Mol Biosyst; 2017 Nov; 13(12):2545-2550. PubMed ID: 28990628
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Characterization and identification of protein O-GlcNAcylation sites with substrate specificity.
    Wu HY; Lu CT; Kao HJ; Chen YJ; Chen YJ; Lee TY
    BMC Bioinformatics; 2014; 15 Suppl 16(Suppl 16):S1. PubMed ID: 25521204
    [TBL] [Abstract][Full Text] [Related]  

  • 17. S-SulfPred: A sensitive predictor to capture S-sulfenylation sites based on a resampling one-sided selection undersampling-synthetic minority oversampling technique.
    Jia C; Zuo Y
    J Theor Biol; 2017 Jun; 422():84-89. PubMed ID: 28411111
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A Comprehensive Review of In silico Analysis for Protein S-sulfenylation Sites.
    Hasan MM; Khatun MS; Kurata H
    Protein Pept Lett; 2018; 25(9):815-821. PubMed ID: 30182830
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Exploiting maximal dependence decomposition to identify conserved motifs from a group of aligned signal sequences.
    Lee TY; Lin ZQ; Hsieh SJ; Bretaña NA; Lu CT
    Bioinformatics; 2011 Jul; 27(13):1780-7. PubMed ID: 21551145
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Characterization and Identification of Lysine Succinylation Sites based on Deep Learning Method.
    Huang KY; Hsu JB; Lee TY
    Sci Rep; 2019 Nov; 9(1):16175. PubMed ID: 31700141
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.